Dual‐mode reflectance and fluorescence near‐video‐rate confocal microscope for architectural, morphological and molecular imaging of tissue

We have developed a near‐video‐rate dual‐mode reflectance and fluorescence confocal microscope for the purpose of imaging ex vivo human specimens and in vivo animal models. The dual‐mode confocal microscope (DCM) has light sources at 488, 664 and 784 nm, a frame rate of 15 frames per second, a maximum field of view of 300 × 250 μm and a resolution limit of 0.31 μm laterally and 1.37 μm axially. The DCM can image tissue architecture and cellular morphology, as well as molecular properties of tissue, using reflective and fluorescent molecular‐specific optical contrast agents.

[1]  P. Corcuff,et al.  In vivo confocal microscopy of human skin: a new design for cosmetology and dermatology. , 2006, Scanning.

[2]  Ann M Gillenwater,et al.  Real‐time detection of epidermal growth factor receptor expression in fresh oral cavity biopsies using a molecular‐specific contrast agent , 2006, International journal of cancer.

[3]  A. Halpern,et al.  Dual mode reflectance and fluorescence confocal laser scanning microscopy for in vivo imaging melanoma progression in murine skin. , 2005, The Journal of investigative dermatology.

[4]  Adam Wax,et al.  Low-cost, scalable laser scanning module for real-time reflectance and fluorescence confocal microscopy. , 2005, Applied optics.

[5]  Cesare Massone,et al.  Diagnostic applicability of in vivo confocal laser scanning microscopy in melanocytic skin tumors. , 2005, The Journal of investigative dermatology.

[6]  S. González,et al.  Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study. , 2004, Journal of the American Academy of Dermatology.

[7]  A. Polglase,et al.  Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. , 2004, Gastroenterology.

[8]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[9]  Konstantin V. Sokolov,et al.  A Far-red Fluorescent Contrast Agent to Image Epidermal Growth Factor Receptor Expression , 2004, Photochemistry and photobiology.

[10]  Leon Hirsch,et al.  Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer , 2004, Technology in cancer research & treatment.

[11]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[12]  Ann M Gillenwater,et al.  Confocal microscopy for real-time detection of oral cavity neoplasia. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[13]  P. Delaney,et al.  View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging. , 2003, The Journal of investigative dermatology.

[14]  Michele Follen,et al.  Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. , 2003, Cancer research.

[15]  R. Richards-Kortum,et al.  Microanatomical and Biochemical Origins of Normal and Precancerous Cervical Autofluorescence Using Laser-scanning Fluorescence Confocal Microscopy¶ , 2003, Photochemistry and photobiology.

[16]  S. González,et al.  Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma. , 2002, Journal of the American Academy of Dermatology.

[17]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Michele Follen,et al.  Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue. , 2002, Academic radiology.

[19]  M. Rajadhyaksha,et al.  Confocal scanning laser microscopy of benign and malignant melanocytic skin lesions in vivo. , 2001, Journal of the American Academy of Dermatology.

[20]  A. Halpern,et al.  Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy. , 2001, Archives of dermatology.

[21]  C Bick,et al.  Abdominal aortic aneurysm repair. , 2000, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[22]  R. Lotan,et al.  Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid. , 2000, American journal of obstetrics and gynecology.

[23]  R Richards-Kortum,et al.  Near real time confocal microscopy of amelanotic tissue: dynamics of aceto-whitening enable nuclear segmentation. , 2000, Optics express.

[24]  M Rajadhyaksha,et al.  Noninvasive Imaging of Human Oral Mucosa in Vivo by Confocal Reflectance Microscopy , 1999, The Laryngoscope.

[25]  R. Webb,et al.  In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. , 1999, The Journal of investigative dermatology.

[26]  M Rajadhyaksha,et al.  Allergic contact dermatitis: correlation of in vivo confocal imaging to routine histology. , 1999, Journal of the American Academy of Dermatology.

[27]  R. Webb,et al.  Video-rate confocal scanning laser microscope for imaging human tissues in vivo. , 1999, Applied optics.

[28]  J. Izatt,et al.  Quantitative laser scanning confocal autofluorescence microscopy of normal, premalignant, and malignant colonic tissues , 1999, IEEE Transactions on Biomedical Engineering.

[29]  L. Deckelbaum,et al.  Differences in laser-induced autofluorescence between adenomatous and hyperplastic polyps and normal colonic mucosa by confocal microscopy , 1995, Digestive Diseases and Sciences.

[30]  W M Petroll,et al.  In vivo confocal microscopy in clinical dental research: an initial appraisal. , 1992, Journal of dentistry.

[31]  Alicia L. Carlson Dual-mode reflectance and fluorescence confocal microscope for near real-time morphological and molecular imaging of tissue , 2006 .

[32]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[33]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[34]  B. Pogue,et al.  Image analysis for discrimination of cervical neoplasia. , 2000, Journal of biomedical optics.