SABlockFL: a blockchain-based smart agent system architecture and its application in federated learning

The purpose of this work is to bridge FL and blockchain technology through designing a blockchain-based smart agent system architecture and applying in FL. and blockchain technology through designing a blockchain-based smart agent system architecture and applying in FL. FL is an emerging collaborative machine learning technique that trains a model across multiple devices or servers holding private data samples without exchanging their data. The locally trained results are aggregated by a centralized server in a privacy-preserving way. However, there is an assumption where the centralized server is trustworthy, which is impractical. Fortunately, blockchain technology has opened a new era of data exchange among trustless strangers because of its decentralized architecture and cryptography-supported techniques.,In this study, the author proposes a novel design of a smart agent inspired by the smart contract concept. Specifically, based on the proposed smart agent, a fully decentralized, privacy-preserving and fair deep learning blockchain-FL framework is designed, where the agent network is consistent with the blockchain network and each smart agent is a participant in the FL task. During the whole training process, both the data and the model are not at the risk of leakage.,A demonstration of the proposed architecture is designed to train a neural network. Finally, the implementation of the proposed architecture is conducted in the Ethereum development, showing the effectiveness and applicability of the design.,The author aims to investigate the feasibility and practicality of linking the three areas together, namely, multi-agent system, FL and blockchain. A blockchain-FL framework, which is based on a smart agent system, has been proposed. The author has made several contributions to the state-of-the-art. First of all, a concrete design of a smart agent model is proposed, inspired by the smart contract concept in blockchain. The smart agent is autonomous and is able to disseminate, verify the information and execute the supported protocols. Based on the proposed smart agent model, a new architecture composed by these agents is formed, which is a blockchain network. Then, a fully decentralized, privacy-preserving and smart agent blockchain-FL framework has been proposed, where a smart agent acts as both a peer in a blockchain network and a participant in a FL task at the same time. Finally, a demonstration to train an artificial neural network is implemented to prove the effectiveness of the proposed framework.