SOT: Compact Representation for Triangle and Tetrahedral Meshes

The Corner Table (CT) represents a triangle mesh by storing 6 integer references per triangle (3 vertex references in the Vertex table and 3 references to opposite corners in the Opposite table, which accelerate access to adjacent triangles). The Compact Half Face (CHF) representation extends CT to tetrahedral meshes, storing 8 references per tetrahedron (4 in the Vertex table and 4 in the Opposite table). We use the term Vertex Opposite Table (VOT) to refer to both CT and CHF and propose a sorted variation, SVOT, which is inspired by tetrahedral mesh encoding techniques and which works for both triangle and tetrahedral meshes. The SVOT does not require additional storage and yet provides, for each vertex, a reference to an incident corner from which the star (incident cells) of the vertex may be traversed at a constant cost per visited element. We use the corner operators for querying and traversing the triangle meshes while for tetrahedral meshes, we propose a set of powerful wedge-based operators. Improving on the SVOT, we propose our Sorted Opposite Table (SOT) variation, which eliminates the Vertex table completely and hence reduces storage requirements by 50% to only 3 references per triangle for triangle meshes and 4 references and 9 bits per tetrahedron for tetrahedral meshes, while preserving the vertex-to-incidentcorner references and supporting the corner operators and our wedge operators with a constant average cost. The SVOT and SOT representation work on manifold meshes with boundaries.

[1]  T. Mitra,et al.  On-the-Fly rendering of losslessly compressed irregular volume data , 2000, VIS '00.

[2]  Frithjof Kruggel,et al.  A fast algorithm for generating large tetrahedral 3D finite element meshes from magnetic resonance tomograms , 1998, Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162).

[3]  Jarek Rossignac,et al.  Through the Cracks of the Solid Modeling Milestone , 1994 .

[4]  Leila De Floriani,et al.  Selective refinement queries for volume visualization of unstructured tetrahedral meshes , 2004, IEEE Transactions on Visualization and Computer Graphics.

[5]  Rao V. Garimella,et al.  Mesh data structure selection for mesh generation and FEA applications , 2002 .

[6]  Jarek Rossignac,et al.  CST: Constructive Solid Trimming for Rendering BReps and CSG , 2007, IEEE Transactions on Visualization and Computer Graphics.

[7]  Urs Bischoff,et al.  TetStreamer: compressed back-to-front transmission of Delaunay tetrahedra meshes , 2005, Data Compression Conference.

[8]  Leila De Floriani,et al.  Data structures for simplicial complexes: an analysis and a comparison , 2005, SGP '05.

[9]  P. Borrel,et al.  Interactive design with sequences of parameterized transformations , 1989 .

[10]  Jaroslaw R. Rossignac,et al.  3D Mesh Compression , 2005, The Visualization Handbook.

[11]  Christian Rössl,et al.  Geometric modeling based on triangle meshes , 2006, SIGGRAPH Courses.

[12]  Pedro V. Sander,et al.  Efficient traversal of mesh edges using adjacency primitives , 2008, SIGGRAPH 2008.

[13]  Shyh-Kuang Ueng,et al.  An out-of-core method for computing connectivities of large unstructured meshes , 2002, EGPGV.

[14]  Wolfgang Straßer,et al.  Tetrahedral mesh compression with the cut-border machine , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[15]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[16]  Jarek Rossignac,et al.  Solid modeling , 1994, IEEE Computer Graphics and Applications.

[17]  Daniel Thalmann,et al.  Star-Vertices: A Compact Representation for Planar Meshes with Adjacency Information , 2001, J. Graphics, GPU, & Game Tools.

[18]  Leila De Floriani,et al.  Two data structures for building tetrahedralizations , 2005, The Visual Computer.

[19]  Valerio Pascucci,et al.  Interactive view-dependent rendering of large isosurfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[20]  T. Kunii,et al.  Web-based shape modeling with HyperFun , 2005, IEEE Computer Graphics and Applications.

[21]  Kenneth I. Joy,et al.  Data Structures for Multiresolution Representation of Unstructured Meshes , 2003 .

[22]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[23]  Luiz Velho,et al.  CHF: A Scalable Topological Data Structure for Tetrahedral Meshes , 2005, XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05).

[24]  Markus H. Gross,et al.  Progressive tetrahedralizations , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[25]  Wolfgang Straßer,et al.  View-dependent tetrahedral meshing and rendering , 2005, GRAPHITE '05.

[26]  Jarek Rossignac,et al.  Connectivity Compression for Irregular Quadrilateral Meshes , 2000, ArXiv.

[27]  Rao V. Garimella,et al.  MSTK - A Flexible Infrastructure Library for Developing Mesh Based Applications , 2004, IMR.

[28]  H. C-N.,et al.  B.N.C. , 1906 .

[29]  Jarek Rossignac Surface simplification and 3D geometry compression , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[30]  Jean-François Remacle,et al.  An algorithm oriented mesh database , 2003, IMR.

[31]  G. Stiny Introduction to Shape and Shape Grammars , 1980 .

[32]  Hans-Peter Seidel,et al.  Directed Edges - A Scalable Representation for Triangle Meshes , 1998, J. Graphics, GPU, & Game Tools.

[33]  Jack Snoeyink,et al.  A Comparison of Five Implementations of 3D Delaunay Tessellation , 2005 .

[34]  Peter Lindstrom,et al.  Random-Accessible Compressed Triangle Meshes , 2007, IEEE Transactions on Visualization and Computer Graphics.

[35]  Tulika Mitra,et al.  On-the-fly rendering of losslessly compressed irregular volume data , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[36]  Jarek Rossignac,et al.  Edgebreaker on a Corner Table: A Simple Technique for Representing and Compressing Triangulated Surfaces , 2003 .

[37]  Nasir D. Memon,et al.  Geometry compression of tetrahedral meshes using optimized prediction , 2005, 2005 13th European Signal Processing Conference.

[38]  Theresa-Marie Rhyne,et al.  Proceedings of the conference on Visualization '99: celebrating ten years , 1999 .

[39]  Shyh-Kuang Ueng,et al.  A note on a linear time algorithm for constructing adjacency graphs of 3D FEA data , 2005, The Visual Computer.

[40]  Bruce G. Baumgart Winged edge polyhedron representation. , 1972 .

[41]  Thomas Ertl,et al.  Texture-encoded tetrahedral strips , 2004 .

[42]  Kenneth I. Joy,et al.  Simplification of Tetrahedral Meshes with Error Bounds , 1999, IEEE Trans. Vis. Comput. Graph..

[43]  Pascal Lienhardt,et al.  Subdivisions of n-dimensional spaces and n-dimensional generalized maps , 1989, SCG '89.

[44]  William H. Frey,et al.  An apporach to automatic three‐dimensional finite element mesh generation , 1985 .

[45]  Peter Lindstrom,et al.  Out-of-core simplification of large polygonal models , 2000, SIGGRAPH.

[46]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[47]  Renato Pajarola,et al.  Implant sprays: compression of progressive tetrahedral mesh connectivity , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[48]  B. Joe,et al.  GEOMPACK — a software package for the generation of meshes using geometric algorithms☆ , 1991 .

[49]  Erik Brisson,et al.  Representing geometric structures ind dimensions: Topology and order , 1993, Discret. Comput. Geom..

[50]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[51]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[52]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[53]  Leonard McMillan,et al.  Simplification and improvement of tetrahedral models for simulation , 2004, SGP '04.

[54]  Hanan Samet,et al.  Multiresolution Tetrahedral Meshes: An Analysis and a Comparison , 2002, Shape Modeling International.

[55]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[56]  Paolo Cignoni,et al.  Simplification of Tetrahedral meshes with accurate error evaluation , 2000 .

[57]  Joerg Meyer,et al.  TetFusion: an algorithm for rapid tetrahedral mesh simplification , 2002, IEEE Visualization, 2002. VIS 2002..

[58]  Jarek Rossignac,et al.  Grow & fold: compression of tetrahedral meshes , 1999, SMA '99.

[59]  Mark S. Shephard,et al.  a General Topology-Based Mesh Data Structure , 1997 .

[60]  John M. Snyder,et al.  Generative Modeling for Computer Graphics and Cad: Symbolic Shape Design Using Interval Analysis , 1992 .

[61]  J. Rossignac,et al.  Blister: GPU-based rendering of Boolean combinations of free-form triangulated shapes , 2005, ACM Trans. Graph..

[62]  David P. Dobkin,et al.  Primitives for the manipulation of three-dimensional subdivisions , 1987, SCG '87.

[63]  Emanuele Danovaro,et al.  The half-edge tree: a compact data structure for level-of-detail tetrahedral meshes , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[64]  Jean-Daniel Boissonnat,et al.  Shape reconstruction from planar cross sections , 1988, Comput. Vis. Graph. Image Process..

[65]  Valerio Pascucci,et al.  Streaming Simplification of Tetrahedral Meshes , 2007, IEEE Transactions on Visualization and Computer Graphics.

[66]  Pedro V. Sander,et al.  Fast triangle reordering for vertex locality and reduced overdraw , 2007, SIGGRAPH 2007.

[67]  Jarek Rossignac,et al.  SOT: compact representation for tetrahedral meshes , 2009, Symposium on Solid and Physical Modeling.

[68]  A. Safonova,et al.  3D Compression Made Simple: Edgebreaker on a Corner-Table , 2001 .

[69]  Barry Joe,et al.  Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision , 1996, Math. Comput..

[70]  Martin Isenburg,et al.  Streaming compression of tetrahedral volume meshes , 2006, Graphics Interface.

[71]  Aristides A. G. Requicha,et al.  Constructive non-regularized geometry , 1991, Comput. Aided Des..

[72]  Hélio Lopes,et al.  Structural operators for modeling 3-manifolds , 1997, SMA '97.

[73]  Mark S. Shephard,et al.  Tetrahedral Mesh Generation With Multiple Elements Through The Thickness , 2007 .

[74]  Mark S. Shephard,et al.  Integration of geometric modeling and advanced finite element preprocessing , 1988 .

[75]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[76]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.