Robust and Efficient One-Way MANOVA Tests

We propose robust tests as alternatives to the classical Wilks’ Lambda test in one-way MANOVA. The robust tests use highly robust and efficient multisample multivariate S-estimators or MM-estimators instead of the empirical covariances. The properties of several robust test statistics are compared. Under the null hypothesis, the distribution of the test statistics is proportional to a chi-square distribution. As an alternative to the asymptotic distribution, we develop a fast robust bootstrap method to estimate the distribution under the null hypothesis. We show when it is asymptotically correct to estimate the null distribution in this way and we use simulations to verify the performance of the bootstrap based tests in finite samples. We also investigate the power of the new tests, as well as their robustness against outliers. Finally, we illustrate the use of these robust test statistics on a real data example. Some additional results are provided as supplemental material.

[1]  S. Van Aelst,et al.  Principal Components Analysis Based on Multivariate MM Estimators With Fast and Robust Bootstrap , 2006 .

[2]  Peter Filzmoser,et al.  Robust statistic for the one-way MANOVA , 2010, Comput. Stat. Data Anal..

[3]  R. Zamar,et al.  Bootstrapping robust estimates of regression , 2002 .

[4]  Peter Filzmoser,et al.  CLASSIFICATION EFFICIENCIES FOR ROBUST LINEAR DISCRIMINANT ANALYSIS , 2008 .

[5]  Peter Filzmoser,et al.  An Object-Oriented Framework for Robust Multivariate Analysis , 2009 .

[6]  J. A. Branco,et al.  Partial influence functions , 2002 .

[7]  H. P. Lopuhaä On the relation between S-estimators and M-estimators of multivariate location and covariance , 1989 .

[8]  W. Fung,et al.  High Breakdown Estimation for Multiple Populations with Applications to Discriminant Analysis , 2000 .

[9]  E. Ronchetti,et al.  Robust inference with GMM estimators , 2001 .

[10]  Stefan Van Aelst,et al.  MULTIVARIATE REGRESSION S-ESTIMATORS FOR ROBUST ESTIMATION AND INFERENCE , 2005 .

[11]  A. Qu,et al.  Robust Tests in Regression Models With Omnibus Alternatives and Bounded Influence , 2007 .

[12]  E. Ronchetti,et al.  Robust Bounded-Influence Tests in General Parametric Models , 1994 .

[13]  Maria-Pia Victoria-Feser,et al.  High-Breakdown Inference for Mixed Linear Models , 2006 .

[14]  Inna Chervoneva,et al.  Constrained S-estimators for linear mixed effects models with covariance components. , 2011, Statistics in medicine.

[15]  V. Yohai,et al.  Robust regression with both continuous and categorical predictors , 2000 .

[16]  V. Yohai,et al.  A Fast Algorithm for S-Regression Estimates , 2006 .

[17]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[18]  Robert Pavur,et al.  A new statistic in the one-way multivariate analysis of variance , 1985 .

[19]  Chester L. Olson,et al.  Comparative Robustness of Six Tests in Multivariate Analysis of Variance , 1974 .

[20]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[21]  P. Rousseeuw,et al.  Influence curves of general statistics , 1981 .

[22]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[23]  Susan R. Wilson,et al.  Two guidelines for bootstrap hypothesis testing , 1991 .

[24]  David E. Booth,et al.  Multivariate statistical inference and applications , 1997 .

[25]  Alessio Farcomeni,et al.  Robust distances for outlier-free goodness-of-fit testing , 2013, Comput. Stat. Data Anal..

[26]  Matias Salibian-Barrera,et al.  Estimating the p-values of robust tests for the linear model , 2005 .

[27]  Stefan Van Aelst,et al.  Fast and robust bootstrap , 2008, Stat. Methods Appl..

[28]  E. Ronchetti,et al.  Robust Inference for Generalized Linear Models , 2001 .

[29]  Stephane Heritier,et al.  Robust Alternatives to the F‐Test in Mixed Linear Models Based on MM‐Estimates , 2007, Biometrics.

[30]  P. L. Davies,et al.  Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices , 1987 .

[31]  Stefan Van Aelst,et al.  Robust and efficient estimation of the residual scale in linear regression , 2013, J. Multivar. Anal..

[32]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[33]  Xuming He,et al.  Bounded Influence and High Breakdown Point Testing Procedures in Linear Models , 1994 .

[34]  Maria-Pia Victoria-Feser,et al.  High Breakdown Inference in the Mixed Linear Model , 2005 .

[35]  M. Hubert,et al.  High-Breakdown Robust Multivariate Methods , 2008, 0808.0657.

[36]  David E. Tyler,et al.  On the uniqueness of S-functionals and M-functionals under nonelliptical distributions , 2000 .