Study on carrier dynamics of perovskite solar cells via transient absorption

[1]  T. Shin,et al.  Controlled growth of perovskite layers with volatile alkylammonium chlorides , 2023, Nature.

[2]  Mengjin Yang,et al.  Multifunctional anchoring of O‐ligands for high‐performance and stable inverted perovskite solar cells , 2022, InfoMat.

[3]  Jinlan Wang,et al.  Control of Hot Carrier Cooling in Lead Halide Perovskites by Point Defects. , 2022, Journal of the American Chemical Society.

[4]  Jianning Ding,et al.  Polar Species for Effective Dielectric Regulation to Achieve High‐Performance CsPbI3 Solar Cells , 2022, Advanced materials.

[5]  Rongjun Zhao,et al.  Enhancing the Hot Carrier Injection of Perovskite Solar Cells by Incorporating a Molecular Dipole Interlayer , 2022, Advanced Functional Materials.

[6]  Derek L. Patton,et al.  Perovskite films passivated by a dendrimer toward high efficiency and high stability devices , 2022, Journal of Power Sources.

[7]  Yonghe Pan,et al.  The effectively optical emission modulation in perovskite MAPbBr3 crystal by hot-electron transfer from metals , 2022, Journal of Physics D: Applied Physics.

[8]  Wensheng Yan,et al.  Direct observation of significant hot carrier cooling suppression in a two-dimensional silicon phononic crystal , 2022, NPG Asia Materials.

[9]  Angshuman Nag,et al.  Chiral Methylbenzylammonium Bismuth Iodide with Zero-Dimensional Perovskite Derivative Structure , 2022, The Journal of Physical Chemistry C.

[10]  G. Ghosh,et al.  Evidence of Hot Charge Carrier Transfer in Hybrid CsPbBr3/Functionalized Graphene , 2022, ChemNanoMat.

[11]  Michael Saliba,et al.  Ultrafast Carrier Dynamics in Wide Band Gap Mixed-Cation Perovskites: Influence of the Cs Cation , 2022, The Journal of Physical Chemistry C.

[12]  Rongjun Zhao,et al.  Unravel the Charge‐Carrier Dynamics in Simple Dimethyl Oxalate‐Treated Perovskite Solar Cells with Efficiency Exceeding 22% , 2022, ENERGY & ENVIRONMENTAL MATERIALS.

[13]  G. Wang,et al.  Manipulate energy transport via fluorinated spacers towards record-efficiency 2D Dion-Jacobson CsPbI3 solar cells. , 2022, Science bulletin.

[14]  Fuzhi Huang,et al.  Differentiated Functions of Potassium Interface Passivation and Doping on Charge-Carrier Dynamics in Perovskite Solar Cells. , 2022, The journal of physical chemistry letters.

[15]  Fuzhi Huang,et al.  Chlorobenzenesulfonic Potassium Salts as the Efficient Multifunctional Passivator for the Buried Interface in Regular Perovskite Solar Cells , 2022, Advanced Energy Materials.

[16]  S. Pati,et al.  Impacts of CsPbBr3/PbSe Heterostructures on Carrier Cooling Dynamics at Low Carrier Density , 2022, Advanced Optical Materials.

[17]  G. Conibeer,et al.  Review of the mechanisms for the phonon bottleneck effect in III–V semiconductors and their application for efficient hot carrier solar cells , 2022, Progress in Photovoltaics: Research and Applications.

[18]  H. Ghosh,et al.  Fast Polaron Formation and Low Carrier Mobility in Defect-Free Polyhedral CsPbBr3 Perovskite Nanocrystals , 2022, ACS Photonics.

[19]  Chaocheng Zhou,et al.  Unveiling Charge Carrier Recombination, Extraction, and Hot‐Carrier Dynamics in Indium Incorporated Highly Efficient and Stable Perovskite Solar Cells , 2022, Advanced science.

[20]  Jun Wang,et al.  Regulation of the luminescence mechanism of two-dimensional tin halide perovskites , 2022, Nature Communications.

[21]  H. Ghosh,et al.  Defect-Interceded Cascading Energy Transfer and Underlying Charge Transfer in Europium-Doped CsPbCl3 Nanocrystals. , 2021, The journal of physical chemistry letters.

[22]  Thomas J. Macdonald,et al.  Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction. , 2021, Journal of the American Chemical Society.

[23]  R. Schaller,et al.  Ultrafast Triplet Generation at the Lead Halide Perovskite/Rubrene Interface , 2021, ACS Energy Letters.

[24]  R. Tang,et al.  Gold atom diffusion assisted thermal healing enabling high-performance hole-transporting material in solar cells , 2021, Applied Physics Letters.

[25]  P. Kamat,et al.  Directing Energy Transfer in Halide Perovskite-Chromophore Hybrid Assemblies. , 2021, Journal of the American Chemical Society.

[26]  Furkan H. Isikgor,et al.  Charge Carrier Recombination at Perovskite/Hole Transport Layer Interfaces Monitored by Time-Resolved Spectroscopy , 2021, ACS Energy Letters.

[27]  Ning Sui,et al.  Manipulating hot carrier behavior of MAPbBr3 nanocrystal by photon flux and temperature , 2021 .

[28]  P. Nordlander,et al.  Plasmon-induced trap filling at grain boundaries in perovskite solar cells , 2021, Light, science & applications.

[29]  T. Unold,et al.  Orders of Recombination in Complete Perovskite Solar Cells – Linking Time‐Resolved and Steady‐State Measurements , 2021, Advanced Energy Materials.

[30]  Xiaoliang Zhang,et al.  Enhanced electron transfer dynamics in perylene diimide passivated efficient and stable perovskite solar cells , 2021, EcoMat.

[31]  Jiao-Jiao Li,et al.  Molecular Gold Nanocluster Au156 Showing Metallic Electron Dynamics. , 2021, Journal of the American Chemical Society.

[32]  Austin C. Flick,et al.  Machine Learning with Knowledge Constraints for Process Optimization of Open-Air Perovskite Solar Cell Manufacturing , 2021, SSRN Electronic Journal.

[33]  G. Wang,et al.  N‐methyl‐2‐pyrrolidone Iodide as Functional Precursor Additive for Record Efficiency 2D Ruddlesden‐Popper (PEA)2(Cs)n−1PbnI3n+1 Solar Cells , 2021, Advanced Functional Materials.

[34]  Jihuai Wu,et al.  Efficient and Stable 2D@3D/2D Perovskite Solar Cells Based on Dual Optimization of Grain Boundary and Interface , 2021, ACS Energy Letters.

[35]  Jiaguo Yu,et al.  CsPbBr3 Nanocrystal Induced Bilateral Interface Modification for Efficient Planar Perovskite Solar Cells , 2021, Advanced science.

[36]  Kaifeng Wu,et al.  Entropy-Gated Thermally Activated Delayed Emission Lifetime in Phenanthrene-Functionalized CsPbBr3 Perovskite Nanocrystals. , 2021, The journal of physical chemistry letters.

[37]  Hongyan Liang,et al.  Eu2+ ions as an antioxidant additive for Sn-based perovskite light-emitting diodes , 2021 .

[38]  Huanping Zhou,et al.  Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression , 2021, Journal of Energy Chemistry.

[39]  Kaifeng Wu,et al.  Long-Lived Delayed Emission from CsPbBr3 Perovskite Nanocrystals for Enhanced Photochemical Reactivity , 2021, ACS Energy Letters.

[40]  Minjie Li,et al.  Hot Carrier Dynamics and Charge Trapping in Surface Passivated β-CsPbI3 Inorganic Perovskite. , 2021, The journal of physical chemistry letters.

[41]  J. Brédas,et al.  Manipulation of hot carrier cooling dynamics in two-dimensional Dion–Jacobson hybrid perovskites via Rashba band splitting , 2021, Nature Communications.

[42]  Michael Saliba,et al.  Emerging perovskite monolayers , 2021, Nature Materials.

[43]  P. Biswas,et al.  Spectroscopic investigations of electron and hole dynamics in MAPbBr3 perovskite film and carrier extraction to PEDOT hole transport layer. , 2021, Physical chemistry chemical physics : PCCP.

[44]  Soumitra Satapathi,et al.  Cation-Dependent Hot Carrier Cooling in the Lead-Free Bismuth Halide A3Bi2I9 (A = FA, MA, and Cs) Perovskite , 2021 .

[45]  B. Hu,et al.  Slow Hot-Carrier Cooling Enabled by Uniformly Arranging Different-n-Value Nanoplates in Quasi-2D Perovskites through Long-Range Orbit-Orbit Interaction toward Enhancing Photovoltaic Actions. , 2021, The journal of physical chemistry letters.

[46]  W. Dang,et al.  In-plane oriented CH3NH3PbI3 nanowire suppress the interface electron transfer to PCBM , 2021 .

[47]  K. Ghiggino,et al.  A sandwich-like structural model revealed for quasi-2D perovskite films , 2021 .

[48]  Hong Yang,et al.  Mapping Trap Dynamics in a CsPbBr3 Single-Crystal Microplate by Ultrafast Photoemission Electron Microscopy. , 2021, Nano letters.

[49]  G. Liang,et al.  Auger-Assisted Electron Transfer between Adjacent Quantum Wells in Two-Dimensional Layered Perovskites. , 2021, Journal of the American Chemical Society.

[50]  G. Liang,et al.  Ultrafast photophysical process of bi-exciton Auger recombination in CuInS2 quantum dots studied by transient-absorption spectroscopy. , 2021, Optics express.

[51]  Hyunjung Shin,et al.  Unusual Hole Transfer Dynamics of the NiO Layer in Methylammonium Lead Tri-iodide Absorber Solar Cells. , 2021, The journal of physical chemistry letters.

[52]  Bin Yang,et al.  Charge-carrier dynamics of trivalent-metal alloyed halide double-perovskite nanocrystals , 2021 .

[53]  N. Park,et al.  Efficient surface passivation of perovskite films by a post-treatment method with a minimal dose , 2021 .

[54]  Ping Chen,et al.  Unraveling the Energy Landscape and Energy Funneling Modulated by Hole Transport Layer for Highly Efficient Perovskite LEDs , 2021, Laser & Photonics Reviews.

[55]  P. K. Dutta,et al.  Hot Phonon and Auger Heating Mediated Slow Intraband Carrier Relaxation in Mixed Halide Perovskite , 2021, IEEE Journal of Quantum Electronics.

[56]  Christopher C. S. Chan,et al.  Uncovering the Electron‐Phonon Interplay and Dynamical Energy‐Dissipation Mechanisms of Hot Carriers in Hybrid Lead Halide Perovskites , 2021, Advanced Energy Materials.

[57]  M. Yuan,et al.  Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes , 2021, Nature communications.

[58]  Qing Zhang,et al.  Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. , 2021, Nano letters.

[59]  Cunyun Xu,et al.  Mechanism for Enhancing Photocurrent of Hot Electron Collection Solar Cells by Adding LiF on the Outmost MAPbI3 Perovskite Layer , 2021, IEEE Journal of Photovoltaics.

[60]  Robert Patterson,et al.  Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture , 2020, Nature communications.

[61]  Wenyan Wang,et al.  Temperature-Dependent Ultrafast Spectral Response of FAPb(Br0.4I0.6)3 Nanocrystals , 2020, The Journal of Physical Chemistry C.

[62]  J. Lloyd‐Hughes,et al.  Hot carriers in mixed Pb-Sn halide perovskite semiconductors cool slowly while retaining their electrical mobility , 2020, Physical Review B.

[63]  E. Cassette,et al.  Auger Recombination and Multiple Exciton Generation in Colloidal Two-Dimensional Perovskite Nanoplatelets: Implications for Light-Emitting Devices , 2020, ACS Applied Nano Materials.

[64]  C. Yeh,et al.  Donor–π–Acceptor Type Porphyrin Derivatives Assisted Defect Passivation for Efficient Hybrid Perovskite Solar Cells , 2020, Advanced Functional Materials.

[65]  K. Tsukagoshi,et al.  Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells , 2020 .

[66]  K. Yager,et al.  Edge States Drive Exciton Dissociation in Ruddlesden–Popper Lead Halide Perovskite Thin Films , 2020 .

[67]  E. Cassette,et al.  Charge Carrier Relaxation in Colloidal FAPbI3 Nanostructures Using Global Analysis , 2020, Nanomaterials.

[68]  H. Ghosh,et al.  Hot Carrier Relaxation in CsPbBr3 based Perovskites: A Polaron Perspective. , 2020, The journal of physical chemistry letters.

[69]  J. Zhang,et al.  Defect-Related Broadband Emission in Two Dimensional Lead Bromide Perovskite Microsheets. , 2020, The journal of physical chemistry letters.

[70]  A. Hiltunen,et al.  B‐Site Co‐Alloying with Germanium Improves the Efficiency and Stability of All‐Inorganic Tin‐Based Perovskite Nanocrystal Solar Cells , 2020, Angewandte Chemie.

[71]  Bingqiang Cao,et al.  Quantum size effect and surface defect passivation in size-controlled CsPbBr3 quantum dots , 2020 .

[72]  Peng Liu,et al.  High-performance perovskite solar cells based on passivating interfacial and intergranular defects , 2020, Solar Energy Materials and Solar Cells.

[73]  H. Jung,et al.  High-Efficiency Perovskite Solar Cells. , 2020, Chemical reviews.

[74]  H. Ghosh,et al.  Temperature Dependent Interplay of Polaron Formation and Hot Carrier Cooling Dynamics in CsPbBr3 Nanocrystals: Role of Carrier-Phonon Coupling Strength. , 2020, The journal of physical chemistry letters.

[75]  E. Diau,et al.  Femtosecond Transient Absorption Spectra and Dynamics of Carrier Relaxation of Tin Perovskites in the Absence and Presence of Additives. , 2020, The journal of physical chemistry letters.

[76]  Shurong Wang,et al.  Insights into Ultrafast Carrier Dynamics in Perovskite Thin Films and Solar Cells , 2020 .

[77]  Kentaroh Watanabe,et al.  Efficient Perovskite Solar Modules with Minimized Nonradiative Recombination and Local Carrier Transport Losses , 2020, Joule.

[78]  Xing’ao Li,et al.  Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells , 2020, Nano-Micro Letters.

[79]  T. Ding,et al.  Triplet Energy Transfer from Perovskite Nanocrystals Mediated by Electron Transfer. , 2020, Journal of the American Chemical Society.

[80]  Veroniki P. Vidali,et al.  Interfacial engineering for organic and perovskite solar cells using molecular materials , 2020, Journal of Physics D: Applied Physics.

[81]  Arnab Ghosh,et al.  Ultrafast Carrier Dynamics in 2D CdSe Nanoplatelets–CsPbX3 Composites: Influence of the Halide Composition , 2020 .

[82]  X. Jia,et al.  Bis(4-methylthio)phenyl)amine-based hole transport materials for highly-efficient perovskite solar cells: insight into the carrier ultrafast dynamics and interfacial transport , 2020, Science China Chemistry.

[83]  Duncan N. Johnstone,et al.  Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites , 2020, Nature.

[84]  Weiqiao Deng,et al.  Manganese-Doped, Lead-Free Double Perovskite Nanocrystals for Bright Orange-Red Emission , 2020, ACS central science.

[85]  P. Kamat,et al.  Charge Carrier Recombination Dynamics of 2-D Lead Halide Perovskites. , 2020, The journal of physical chemistry letters.

[86]  Hui Li,et al.  Efficient Perovskite Solar Cells by Reducing Interface‐Mediated Recombination: a Bulky Amine Approach , 2020, Advanced Energy Materials.

[87]  Bin Yang,et al.  Carrier Multiplication and Hot-Carrier Cooling Dynamics in Quantum Confined CsPbI3 Perovskite Nanocrystals. , 2020, The journal of physical chemistry letters.

[88]  P. K. Mandal,et al.  Extent of Shallow/Deep Trap States Beyond Conduction Band Minimum in Defect Tolerant CsPbBr3 Perovskite Quantum Dot: Control Over the Degree of Charge Carrier Recombination. , 2020, The journal of physical chemistry letters.

[89]  F. Castellano,et al.  Mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface , 2020, Nature Communications.

[90]  Y. Qi,et al.  Reducing Detrimental Defects for High‐Performance Metal Halide Perovskite Solar Cells , 2020, Angewandte Chemie.

[91]  Pengfei Jiang,et al.  In-situ Synthesis of Ultrastable CsPbBr3 Perovskite Nanocrystals Coated with Polyimide in a CSTR System. , 2019, ACS applied materials & interfaces.

[92]  D. Guldi,et al.  Hot electron injection into semiconducting polymers in polymer based-perovskite solar cells and their fate. , 2019, Nanoscale.

[93]  C. G. Van de Walle,et al.  First‐Principles Simulation of Carrier Recombination Mechanisms in Halide Perovskites , 2019, Advanced Energy Materials.

[94]  Q. Gong,et al.  Minimizing non-radiative recombination losses in perovskite solar cells , 2019, Nature Reviews Materials.

[95]  Hongli Gao,et al.  Mechanism of PbI2 situ-passivated perovskite films for enhancing performance of perovskite solar cells. , 2019, ACS applied materials & interfaces.

[96]  S. Mhaisalkar,et al.  Hot carrier extraction in CH3NH3PbI3 unveiled by pump-push-probe spectroscopy , 2019, Science Advances.

[97]  Dieter Neher,et al.  Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces , 2019, Advanced materials.

[98]  Zhiyong Liu,et al.  A Review on Improving the Quality of Perovskite Films in Perovskite Solar Cells via the Weak Forces Induced by Additives , 2019, Applied Sciences.

[99]  Tao Ding,et al.  Observation of a phonon bottleneck in copper-doped colloidal quantum dots , 2019, Nature Communications.

[100]  Jianyu Yuan,et al.  Perovskite Quantum Dot Solar Cells with 15.6% Efficiency and Improved Stability Enabled by an α-CsPbI3/FAPbI3 Bilayer Structure , 2019, ACS Energy Letters.

[101]  Thomas J. Macdonald,et al.  Origin of Performance Enhancement in TiO 2 ‐Carbon Nanotube Composite Perovskite Solar Cells , 2019, Small Methods.

[102]  B. Murali,et al.  Deciphering the Ultrafast Nonlinear Optical Properties and Dynamics of Pristine and Ni-Doped CsPbBr3 Colloidal 2D Nanocrystals. , 2019, The journal of physical chemistry letters.

[103]  Meng Zhou,et al.  Charge Transfer and Diffusion at the Perovskite/PCBM Interface Probed by Transient Absorption and Reflection , 2019, The Journal of Physical Chemistry C.

[104]  N. Park,et al.  Elongated Lifetime and Enhanced Flux of Hot Electrons on Perovskite Plasmonic Nanodiode. , 2019, Nano letters.

[105]  Y. Tachibana,et al.  Influence of Hole Mobility on Charge Separation and Recombination Dynamics at Lead Halide Perovskite and Spiro-OMeTAD Interface , 2019, Journal of Photopolymer Science and Technology.

[106]  M. Kanatzidis,et al.  Transient Sub-Band-Gap States at Grain Boundaries of CH3NH3PbI3 Perovskite Act as Fast Temperature Relaxation Centers , 2019, ACS Energy Letters.

[107]  N. Banerji,et al.  Charge injection and trapping at perovskite interfaces with organic hole transporting materials of different ionization energies , 2019, APL Materials.

[108]  D. Kuang,et al.  Enhanced efficacy of defect passivation and charge extraction for efficient perovskite photovoltaics with a small open circuit voltage loss , 2019, Journal of Materials Chemistry A.

[109]  Zhenda Lu,et al.  Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals , 2019, Nature Communications.

[110]  G. Wiederrecht,et al.  Charge Transfer Dynamics of Phase-Segregated Halide Perovskites: CH3NH3PbCl3 and CH3NH3PbI3 or (C4H9NH3)2(CH3NH3) n-1Pb nI3 n+1 Mixtures. , 2019, ACS applied materials & interfaces.

[111]  G. Brocks,et al.  Absolute energy level positions in tin- and lead-based halide perovskites , 2019, Nature Communications.

[112]  Bin Yang,et al.  Colloidal Synthesis and Charge-Carrier Dynamics of Cs2 AgSb1-y Biy X6 (X: Br, Cl; 0 ≤y ≤1) Double Perovskite Nanocrystals. , 2019, Angewandte Chemie.

[113]  T. Lian,et al.  Ultrafast Charge Separation in Two-Dimensional CsPbBr3 Perovskite Nanoplatelets. , 2019, The journal of physical chemistry letters.

[114]  Kathryn E. Knowles,et al.  Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: spectroelectrochemistry, microscopy, and identification of thermal contributions , 2018 .

[115]  R. Aepuru,et al.  Exploring the Carrier Dynamics in Zinc Oxide–Metal Halide-Based Perovskite Nanostructures: Toward Reduced Dielectric Loss and Improved Photocurrent , 2018, The Journal of Physical Chemistry C.

[116]  Luchao Du,et al.  Ultrafast Interfacial Charge Transfer of Cesium Lead Halide Perovskite Films CsPbX3 (X = Cl, Br, I) with Different Halogen Mixing , 2018, The Journal of Physical Chemistry C.

[117]  K. Yoshino,et al.  Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells , 2018, Nano Energy.

[118]  M. A. Kamarudin,et al.  New Tin(II) Fluoride Derivative as a Precursor for Enhancing the Efficiency of Inverted Planar Tin/Lead Perovskite Solar Cells , 2018, The Journal of Physical Chemistry C.

[119]  H. Schwoerer,et al.  Direct Observation of Charge Injection From CH3NH3PbI3−xClx to Organic Semiconductors Monitored With sub‐ps Transient Absorption Spectroscopy , 2018, physica status solidi (b).

[120]  Verena A. Hintermayr,et al.  Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets , 2018, ACS nano.

[121]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[122]  H. Schwoerer,et al.  Ultrafast Charge Dynamics in Mixed Cation - Mixed Halide Perovskite Thin Films. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[123]  D. Geohegan,et al.  Ultrafast Spectral Dynamics of CsPb(BrxCl1–x)3 Mixed-Halide Nanocrystals , 2018, ACS Photonics.

[124]  Y. Tachibana,et al.  Identifying an Optimum Perovskite Solar Cell Structure by Kinetic Analysis: Planar, Mesoporous Based, or Extremely Thin Absorber Structure , 2018, ACS Applied Energy Materials.

[125]  Thomas R. Hopper,et al.  Ultrafast Intraband Spectroscopy of Hot-Carrier Cooling in Lead-Halide Perovskites , 2018, ACS Energy Letters.

[126]  T. Lenzer,et al.  Intramolecular and interfacial dynamics of triarylamine-based hole transport materials , 2018, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[127]  Qiang Zhao,et al.  Light Absorption Coefficient of CsPbBr3 Perovskite Nanocrystals. , 2018, The journal of physical chemistry letters.

[128]  Xingwang Zhang,et al.  Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives. , 2018, Science bulletin.

[129]  Bin Yang,et al.  Lead-Free Silver-Bismuth Halide Double Perovskite Nanocrystals. , 2018, Angewandte Chemie.

[130]  G. Galli,et al.  Excitations Partition into Two Distinct Populations in Bulk Perovskites , 2018 .

[131]  J. Even,et al.  Ultrafast selective extraction of hot holes from cesium lead iodide perovskite films , 2018, Journal of Energy Chemistry.

[132]  E. Kymakis,et al.  Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient Absorption Spectroscopy. , 2017, ACS applied materials & interfaces.

[133]  J. Brédas,et al.  Molecular behavior of zero-dimensional perovskites , 2017, Science Advances.

[134]  Dong‐Yu Kim,et al.  Fabrication-Method-Dependent Excited State Dynamics in CH3NH3PbI3 Perovskite Films , 2017, Scientific Reports.

[135]  Tze Chien Sum,et al.  Hot carrier cooling mechanisms in halide perovskites , 2017, Nature Communications.

[136]  G. Cerullo,et al.  Femtosecond Charge-Injection Dynamics at Hybrid Perovskite Interfaces. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[137]  David B. Geohegan,et al.  Bromine substitution improves excited-state dynamics in mesoporous mixed halide perovskite films. , 2017, Nanoscale.

[138]  A. Djurišić,et al.  Investigation of high performance TiO2 nanorod array perovskite solar cells , 2017 .

[139]  Xiaoyang Zhu,et al.  Large polarons in lead halide perovskites , 2017, Science Advances.

[140]  T. Lenzer,et al.  Quantifying ultrafast charge carrier injection from methylammonium lead iodide into the hole-transport material H101 and mesoporous TiO2 using Vis-NIR transient absorption. , 2017, Physical chemistry chemical physics : PCCP.

[141]  Bernd Rech,et al.  Correlation between Electronic Defect States Distribution and Device Performance of Perovskite Solar Cells , 2017, Advanced science.

[142]  Daniele M. Monahan,et al.  Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck. , 2017, The journal of physical chemistry letters.

[143]  M. Yanagida,et al.  Direct Observation of Ultrafast Hole Injection from Lead Halide Perovskite by Differential Transient Transmission Spectroscopy. , 2017, The journal of physical chemistry letters.

[144]  G. Itskos,et al.  Long-Lived Hot Carriers in Formamidinium Lead Iodide Nanocrystals , 2017 .

[145]  J. Shin,et al.  Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy , 2017 .

[146]  Joseph K. Gallaher,et al.  The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals , 2017 .

[147]  Y. Huang,et al.  Identification and characterization of a new intermediate to obtain high quality perovskite films with hydrogen halides as additives , 2017 .

[148]  M. Grätzel,et al.  Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals , 2017, Nature Communications.

[149]  Shengye Jin,et al.  Decoupling Interfacial Charge Transfer from Bulk Diffusion Unravels Its Intrinsic Role for Efficient Charge Extraction in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[150]  R. Friend,et al.  Intrinsic and Extrinsic Stability of Formamidinium Lead Bromide Perovskite Solar Cells Yielding High Photovoltage. , 2016, Nano letters.

[151]  M. Wasielewski,et al.  Carrier Diffusion Lengths of over 500 nm in Lead-Free Perovskite CH3NH3SnI3 Films. , 2016, Journal of the American Chemical Society.

[152]  S. Ghosh,et al.  Frohlich Interaction in Compound Semiconductors: A Comparative Study , 2016 .

[153]  M. Nazeeruddin,et al.  Ultrafast charge carrier dynamics in CH3NH3PbI3: evidence for hot hole injection into spiro-OMeTAD , 2016 .

[154]  Ayan A. Zhumekenov,et al.  Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length , 2016 .

[155]  Tak W. Kee,et al.  Ultrafast Carrier Dynamics in Methylammonium Lead Bromide Perovskite , 2016 .

[156]  Nripan Mathews,et al.  Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations. , 2016, Accounts of chemical research.

[157]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[158]  Kai Zhu,et al.  Comparison of Recombination Dynamics in CH3NH3PbBr3 and CH3NH3PbI3 Perovskite Films: Influence of Exciton Binding Energy. , 2015, The journal of physical chemistry letters.

[159]  J. Luther,et al.  Observation of a hot-phonon bottleneck in lead-iodide perovskites , 2015, Nature Photonics.

[160]  Tianquan Lian,et al.  Ultrafast Interfacial Electron and Hole Transfer from CsPbBr3 Perovskite Quantum Dots. , 2015, Journal of the American Chemical Society.

[161]  R. Friend,et al.  Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites , 2015, Nature Communications.

[162]  Hua Tang,et al.  Efficient Extraction of Trapped Holes from Colloidal CdS Nanorods. , 2015, Journal of the American Chemical Society.

[163]  J. Luther,et al.  Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal , 2015, Nature Communications.

[164]  T. Pullerits,et al.  Ultrafast photoinduced dynamics in quantum dot-based systems for light harvesting , 2015, Nano Research.

[165]  H. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, Nature Physics.

[166]  C. Soci,et al.  Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films. , 2015, The journal of physical chemistry letters.

[167]  Lijia Liu,et al.  Energy Level Offsets at Lead Halide Perovskite/Organic Hybrid Interfaces and Their Impacts on Charge Separation , 2015 .

[168]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[169]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[170]  K. Yoshino,et al.  Charge transfer and recombination at the metal oxide/CH3NH3PbClI2/spiro-OMeTAD interfaces: uncovering the detailed mechanism behind high efficiency solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[171]  Prashant V. Kamat,et al.  Band filling with free charge carriers in organometal halide perovskites , 2014, Nature Photonics.

[172]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[173]  M. Zervas,et al.  High Power Fiber Lasers: A Review , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[174]  Pascal Pernot,et al.  Comprehensive data analysis of femtosecond transient absorption spectra: A review , 2012 .

[175]  Qinghua Xu,et al.  Excitation wavelength and fluence dependent femtosecond transient absorption studies on electron dynamics of gold nanorods. , 2011, The journal of physical chemistry. A.

[176]  S. K. Sundaram,et al.  Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses , 2002, Nature materials.

[177]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[178]  Ahmed H. Zewail,et al.  Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond† , 2000 .

[179]  D. Richardson,et al.  Energy quantisation in figure eight fibre laser , 1992 .

[180]  A. H. Zewail,et al.  Femtosecond laser control of a chemical reaction , 1992, Nature.

[181]  A. Zewail,et al.  Real-time femtosecond probing of "transition states" in chemical reactions , 1987 .

[182]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .