A manipulation framework for compliant humanoid COMAN: Application to a valve turning task

With the purpose of achieving a desired interaction performance for our compliant humanoid robot (COMAN), in this paper we propose a semi-autonomous control framework and evaluate it experimentally in a valve turning setup. The control structure consists of various modules and interfaces to identify the valve, locate the robot in front of it and perform the manipulation. The manipulation module implements four motion primitives (Reach, Grasp, Rotate and Disengage) and realizes the corresponding desired impedance profile for each phase to accomplish the task. In this direction, to establish a stable and compliant contact between the valve and the robot hands, while being able to generate the sufficient rotational torques depending on the valve's friction, Rotate incorporates a novel dual-arm impedance control technique to plan and realize a task-appropriate impedance profile. Results of the implementation of the proposed control framework are firstly evaluated in simulation studies using Gazebo. Subsequent experimental results highlight the efficiency of the proposed impedance planning and control in generation of the required interaction forces to accomplish the task.

[1]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[2]  Robin R. Murphy,et al.  Disaster Robotics , 2014, Springer Handbook of Robotics, 2nd Ed..

[3]  Nikolaos G. Tsagarakis,et al.  Tele-impedance: Teleoperation with impedance regulation using a body–machine interface , 2012, Int. J. Robotics Res..

[4]  Nikolaos G. Tsagarakis,et al.  A Modular Approach for Remote Operation of Humanoid Robots in Search and Rescue Scenarios , 2014, MESAS.

[5]  Manuel G. Catalano,et al.  Adaptive synergies for a humanoid robot hand , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[6]  Stjepan Bogdan,et al.  Valve turning using a dual-arm aerial manipulator , 2014 .

[7]  Comparison of various active impedance control approaches, modeling, implementation, passivity, stability and trade-offs , 2012, 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[8]  Christian Ott,et al.  Cartesian Impedance Control of Redundant and Flexible-Joint Robots , 2008, Springer Tracts in Advanced Robotics.

[9]  Natàlia Hurtós,et al.  ROSPlan: Planning in the Robot Operating System , 2015, ICAPS.

[10]  Nikolaos G. Tsagarakis,et al.  Yarp Based Plugins for Gazebo Simulator , 2014, MESAS.

[11]  Atsushi Konno,et al.  Working postures for humanoid robots to generate large manipulation force , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Darwin G. Caldwell,et al.  Towards Autonomous Robotic Valve Turning , 2015 .

[13]  Florian Schmidt,et al.  Rollin' Justin - Mobile platform with variable base , 2009, 2009 IEEE International Conference on Robotics and Automation.

[14]  Dmitry Berenson,et al.  Toward a user-guided manipulation framework for high-DOF robots with limited communication , 2013, 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA).

[15]  Stefano Chiaverini,et al.  Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators , 1997, IEEE Trans. Robotics Autom..

[16]  Antonio Bicchi,et al.  Modelling natural and artificial hands with synergies , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  Adelardo A. D. Medeiros,et al.  A survey of control architectures for autonomous mobile robots , 1998, J. Braz. Comput. Soc..

[18]  Giorgio Metta,et al.  YARP: Yet Another Robot Platform , 2006 .

[19]  Alin Albu-Schäffer,et al.  Cartesian impedance control techniques for torque controlled light-weight robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  James M. Conrad,et al.  Survey of popular robotics simulators, frameworks, and toolkits , 2011, 2011 Proceedings of IEEE Southeastcon.

[21]  Nikolaos G. Tsagarakis,et al.  A passivity based admittance control for stabilizing the compliant humanoid COMAN , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[22]  Imin Kao,et al.  Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers , 2000, Int. J. Robotics Res..

[23]  Rajiv V. Dubey,et al.  A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators , 1993, IEEE Trans. Robotics Autom..

[24]  Nikolaos G. Tsagarakis,et al.  TeleImpedance: Exploring the role of common-mode and configuration-dependant stiffness , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[25]  Nikolaos G. Tsagarakis,et al.  COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control , 2013, 2013 IEEE International Conference on Robotics and Automation.

[26]  Oussama Khatib,et al.  Synthesis of Whole-Body Behaviors through Hierarchical Control of Behavioral Primitives , 2005, Int. J. Humanoid Robotics.

[27]  Jun-Ho Oh,et al.  Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3: HUBO) , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..