Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit.

We develop a periodically patterned conformal photonic-plasmonic crystal based solar architecture for a nano-crystalline silicon solar cell, through rigorous scattering matrix simulations. The solar cell architecture has a periodic array of tapered silver nano-pillars as the back-reflector coupled with a conformal periodic structure at the top of the cell. The absorption and maximal current, averaged over the entire range of wavelengths, for this solar cell architecture is at the semi-classical 4n(2) limit over a range of common thicknesses (500-1500 nm) and slightly above the 4n(2) limit for a 500 nm nc-Si cell. The absorption exceeds the 4n(2) limit, corrected for reflection loss at the top surface. The photonic crystal cell current is enhanced over the flat Ag back-reflector by 60%, for a thick 1000 nm nc-Si layer, where predicted currents exceed 31 mA/cm(2). The conformal structure at the top surface focuses light within the absorber layer. There is plasmonic concentration of light, with intensity enhancements exceeding 7, near the back reflector that substantially enhances absorption.

[1]  D. Knipp,et al.  Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells. , 2011, Optics express.

[2]  R. Biswas,et al.  Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector , 2010 .

[3]  A. Fejfar,et al.  Optical absorption and light scattering in microcrystalline silicon thin films and solar cells , 2000 .

[4]  C. Ballif,et al.  Development of micromorph tandem solar cells on flexible low cost plastic substrates , 2009 .

[5]  Shrestha Basu Mallick,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells , 2010, Photonics Europe.

[6]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[7]  H. Fujiwara,et al.  Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells , 2009 .

[8]  Mukul Agrawal,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. , 2010, Optics express.

[9]  Zongfu Yu,et al.  Fundamental Limit of Nanophotonic Light-trapping in Solar Cells , 2010 .

[10]  Vikram L. Dalal,et al.  Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells , 2009 .

[11]  Stefan Zukotynski,et al.  High-efficiency photonic crystal solar cell architecture. , 2009, Optics express.

[12]  J. Owens,et al.  Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells , 2009 .

[13]  J. Springer,et al.  Absorption loss at nanorough silver back reflector of thin-film silicon solar cells , 2004 .

[14]  S. Guha,et al.  Light Trapping in Hydrogenated Amorphous and Nanocrystalline Silicon Based Thin-Film Solar Cells With Ag/ZnO Back Reflectors , 2012 .

[15]  E. Yablonovitch Statistical ray optics , 1982 .

[16]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[17]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[18]  Helmut Stiebig,et al.  Thin-film silicon solar cells with efficient periodic light trapping texture , 2007 .

[19]  Dayu Zhou,et al.  Photonic crystal enhanced light-trapping in thin film solar cells , 2008 .

[20]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[21]  Scott Ward,et al.  Nanostructured black silicon and the optical reflectance of graded-density surfaces , 2009 .

[22]  Zhiyuan Li,et al.  Photonic band structures solved by a plane-wave-based transfer-matrix method. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Gang Chen,et al.  Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. , 2010, Nano letters.

[24]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[25]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[26]  Robert W. Collins,et al.  EVOLUTIONARY PHASE DIAGRAMS FOR PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION OF SILICON THIN FILMS FROM HYDROGEN-DILUTED SILANE , 1999 .