Morphological changes of human skin cells exposed to a DC electric field in vitro using a new exposure system

The human skin contains a physiological battery that could be implicated in the healing process, by creating an endogenous electric field. Skin cells undergo morphological changes in response to an external DC electric field (EF). We found that fibroblasts reorient their cell bodies in a manner perpendicular to the EF direction, for normal and above physiological intensities. Actin and tubulin filaments (cytoskeleton proteins) follow the same pattern of reorientation. Keratinocytes tend to elongate in the same direction, although to a lesser extent. The study of the response of human skin cells to an external EF is a first step toward a better understanding of the mechanisms involved in wound healing and eventually toward the improvement of wound repair. La peau humaine contient une batterie physiologique qui pourrait ětre impliquee dans le processus de guerison en produisant un champ electrique (CE) endogene au site de la plaie. Les cellules de la peau subissent des changements morphologiques lorsqu'elles sont soumises a un CE externe. Sous un CE d'intensite physiologique ou plus grand, les fibroblastes eeorientent leurs corps cellulaires de facon perpendiculaire au CE. Les filaments d'actine et de tubuline (proteines du cytosquelette) repondent de la měme facon. De facon moins evidente, les keratinocytes ont aussi tendance a s'allonger dans la měme direction. La reponse des cellules de la peau face a un CE est une premiere etape vers une meilleure comprehension et amelioration du processus de guerison des plaies.

[1]  R. Isseroff,et al.  Migration of human keratinocytes in electric fields requires growth factors and extracellular calcium. , 1998, The Journal of investigative dermatology.

[2]  W. Jy,et al.  Electric stimulation of human fibroblasts causes an increase in Ca2+ influx and the exposure of additional insulin receptors , 1989, Journal of cellular physiology.

[3]  F. Gottrup,et al.  The effect of electrical current on healing skin incision. An experimental study. , 1991, The European journal of surgery = Acta chirurgica.

[4]  Xavier Navarro,et al.  Magnetically Aligned Collagen Gel Filling a Collagen Nerve Guide Improves Peripheral Nerve Regeneration , 1999, Experimental Neurology.

[5]  R Goldman,et al.  Electric fields and proliferation in a chronic wound model. , 1996, Bioelectromagnetics.

[6]  K. C. Waters,et al.  Influence of AC and DC electrical stimulation on wound healing in pigs: a biomechanical analysis. , 1993, Journal of investigative surgery : the official journal of the Academy of Surgical Research.

[7]  K R Robinson,et al.  The responses of cells to electrical fields: a review , 1985, The Journal of cell biology.

[8]  A. Hall,et al.  Rho GTPases and the actin cytoskeleton. , 1998, Science.

[9]  H Green,et al.  Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Curray,et al.  The Analysis of Two-Dimensional Orientation Data , 1956, The Journal of Geology.

[11]  F A Auger,et al.  Improvement of human keratinocyte isolation and culture using thermolysin. , 1993, Burns : journal of the International Society for Burn Injuries.

[12]  François A. Auger,et al.  Review: The Self-Assembly Approach for Organ Reconstruction by Tissue Engineering , 2000 .

[13]  R. Nuccitelli,et al.  Embryonic fibroblast motility and orientation can be influenced by physiological electric fields , 1984, The Journal of cell biology.

[14]  V. Binhi,et al.  Ion-protein dissociation predicts 'windows' in electric field-induced wound-cell proliferation. , 2000, Biochimica et biophysica acta.

[15]  J. W. Vanable,et al.  The glabrous epidermis of cavies contains a powerful battery. , 1982, The American journal of physiology.

[16]  F A Auger,et al.  A completely biological tissue‐engineered human blood vessel , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  H. Soong,et al.  Effects of electric fields on cytoskeleton of corneal stromal fibroblasts. , 1990, Current eye research.

[18]  G. Oster,et al.  Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. , 1999, Journal of cell science.

[19]  R T Tranquillo,et al.  Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. , 1996, Biomaterials.

[20]  J. Aubin,et al.  Studies on the alignment of fibroblasts in uniform applied electrical fields. , 1989, Bioelectromagnetics.

[21]  A. Mason,et al.  Weak direct current accelerates split-thickness graft healing on tangentially excised second-degree burns. , 1991, The Journal of burn care & rehabilitation.

[22]  R. Nuccitelli,et al.  Embryonic cell motility can be guided by physiological electric fields. , 1983, Experimental cell research.

[23]  R T Tranquillo,et al.  A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. , 1993, Journal of cell science.

[24]  A. Harris,et al.  Effects of electric fields on fibroblast contractility and cytoskeleton. , 1990, The Journal of experimental zoology.

[25]  I. Schwab,et al.  DC electric fields induce rapid directional migration in cultured human corneal epithelial cells. , 2000, Experimental eye research.

[26]  R. Isseroff,et al.  Involucrin-positive keratinocytes demonstrate decreased migration speed but sustained directional migration in a DC electric field. , 1999, The Journal of investigative dermatology.

[27]  A. Zepeda,et al.  The influence of pulsed electrical stimulation on the wound healing of burned rat skin. , 1995, Archives of medical research.

[28]  D. Rose,et al.  Analysis of a multilevel iterative method for nonlinear finite element equations , 1982 .

[29]  Lucie Germain,et al.  In vitro reconstruction of a human capillary‐like network in a tissue‐engineered skin equivalent , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  M. S. Cooper,et al.  Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Pollack,et al.  Conductivity of a chronic wound model. , 1996, Bioelectromagnetics.

[32]  A. Curtis,et al.  Magnetic orientation of collagen and bone mixture , 2000 .

[33]  S W Hui,et al.  Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent , 1988, The Journal of cell biology.

[34]  D. Ladin,et al.  Effects of electrically charged particles in enhancement of rat wound healing. , 1999, The Journal of surgical research.

[35]  J V Forrester,et al.  A small, physiological electric field orients cell division. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A T Barker,et al.  Human skin battery potentials and their possible role in wound healing , 1983, The British journal of dermatology.

[37]  J. Forrester,et al.  Human corneal epithelial cells reorient and migrate cathodally in a small applied electric field. , 1997, Current eye research.

[38]  P. Gogia,et al.  High-voltage galvanic stimulation on wound healing in guinea pigs: longer-term effects. , 1995, Archives of physical medicine and rehabilitation.

[39]  M Misakian,et al.  Biological, physical, and electrical parameters for in vitro studies with ELF magnetic and electric fields: a primer. , 1993, Bioelectromagnetics.

[40]  J V Forrester,et al.  Re-orientation and faster, directed migration of lens epithelial cells in a physiological electric field. , 2000, Experimental eye research.

[41]  A. Mason,et al.  Multiple Graft Harvestings from Deep Partial-Thickness Scald Wounds Healed under the Influence of Weak Direct Current , 1988 .

[42]  K. Cheng,et al.  Electric fields and proliferation in a dermal wound model: cell cycle kinetics. , 1998, Bioelectromagnetics.

[43]  W. Carrier,et al.  Effects of Extremely Low Frequency (Elf) Electric Fields On Cell Growth and Dna Repair In Human Skin Fibroblasts , 1986, Cell and tissue kinetics.

[44]  Wen Xu,et al.  Characterization of a new tissue-engineered human skin equivalent with hair , 1999, In Vitro Cellular & Developmental Biology - Animal.

[45]  R. Isseroff,et al.  Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. , 1996, Journal of cell science.

[46]  V Sahgal,et al.  Experimental wound healing with electrical stimulation. , 1999, Artificial organs.

[47]  P. W. Luther,et al.  Changes in cell shape and actin distribution induced by constant electric fields , 1983, Nature.

[48]  R. Guignard,et al.  Reconstructed Human Cornea Produced in vitro by Tissue Engineering , 1999, Pathobiology.

[49]  Y. Har-Shai,et al.  Static-electric field induction by a silicone cushion for the treatment of hypertrophic and keloid scars. , 1998 .

[50]  L. Bourguignon,et al.  Electric stimulation of protein and DNA synthesis in human fibroblasts , 1987, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.