MiSC: Mixed Strategies Crowdsourcing

Popular crowdsourcing techniques mostly focus on evaluating workers' labeling quality before adjusting their weights during label aggregation. Recently, another cohort of models regard crowdsourced annotations as incomplete tensors and recover unfilled labels by tensor completion. However, mixed strategies of the two methodologies have never been comprehensively investigated, leaving them as rather independent approaches. In this work, we propose $\textit{MiSC}$ ($\textbf{Mi}$xed $\textbf{S}$trategies $\textbf{C}$rowdsourcing), a versatile framework integrating arbitrary conventional crowdsourcing and tensor completion techniques. In particular, we propose a novel iterative Tucker label aggregation algorithm that outperforms state-of-the-art methods in extensive experiments.

[1]  Xuanjing Huang,et al.  Learning Context-Sensitive Word Embeddings with Neural Tensor Skip-Gram Model , 2015, IJCAI.

[2]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[3]  Brendan T. O'Connor,et al.  Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks , 2008, EMNLP.

[4]  Shay B. Cohen,et al.  Tensor Decomposition for Fast Parsing with Latent-Variable PCFGs , 2012, NIPS.

[5]  Jian Peng,et al.  Variational Inference for Crowdsourcing , 2012, NIPS.

[6]  Purnamrita Sarkar,et al.  Scaling Up Crowd-Sourcing to Very Large Datasets: A Case for Active Learning , 2014, Proc. VLDB Endow..

[7]  L. Lathauwer,et al.  On the Best Rank-1 and Rank-( , 2004 .

[8]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[9]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[10]  John C. Platt,et al.  Learning from the Wisdom of Crowds by Minimax Entropy , 2012, NIPS.

[11]  Liqing Zhang,et al.  Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  C. Harris Problems in measuring change , 1965 .

[13]  B Krause,et al.  On problems in measuring change. , 1982, Zeitschrift fur Psychologie mit Zeitschrift fur angewandte Psychologie.

[14]  Pietro Perona,et al.  The Multidimensional Wisdom of Crowds , 2010, NIPS.

[15]  J. Levin Three-mode factor analysis. , 1965, Psychological bulletin.

[16]  Arieh Iserles,et al.  On the Foundations of Computational Mathematics , 2001 .

[17]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[18]  Johan A. K. Suykens,et al.  Learning with tensors: a framework based on convex optimization and spectral regularization , 2014, Machine Learning.

[19]  Shao-Yuan Li,et al.  Multi-label Crowdsourcing Learning with Incomplete Annotations , 2018, PRICAI.

[20]  Joan Bruna,et al.  Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation , 2014, NIPS.

[21]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[22]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[23]  A. P. Dawid,et al.  Maximum Likelihood Estimation of Observer Error‐Rates Using the EM Algorithm , 1979 .

[24]  D. A. Bell,et al.  Applied Statistics , 1953, Nature.

[25]  R. Lathe Phd by thesis , 1988, Nature.

[26]  Prateek Jain,et al.  Provable Tensor Factorization with Missing Data , 2014, NIPS.

[27]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[28]  Bin Bi,et al.  Iterative Learning for Reliable Crowdsourcing Systems , 2012 .

[29]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Alexander Novikov,et al.  Tensorizing Neural Networks , 2015, NIPS.

[31]  Takanori Maehara,et al.  On Tensor Train Rank Minimization : Statistical Efficiency and Scalable Algorithm , 2017, NIPS.

[32]  Gerardo Hermosillo,et al.  Supervised learning from multiple experts: whom to trust when everyone lies a bit , 2009, ICML '09.

[33]  Yudong Chen,et al.  Incoherence-Optimal Matrix Completion , 2013, IEEE Transactions on Information Theory.

[34]  Javier R. Movellan,et al.  Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise , 2009, NIPS.

[35]  Xi Chen,et al.  Spectral Methods Meet EM: A Provably Optimal Algorithm for Crowdsourcing , 2014, J. Mach. Learn. Res..

[36]  Taiji Suzuki,et al.  Convergence rate of Bayesian tensor estimator and its minimax optimality , 2015, ICML.

[37]  Jingrui He,et al.  Crowdsourcing via Tensor Augmentation and Completion , 2016, IJCAI.