In-depth Analysis of Protein Inference Algorithms using a Workflow Framework and Well-Defined Metrics

General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal

[1]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[2]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[3]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[4]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[5]  Oliver Kohlbacher,et al.  Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics , 2007, BMC Bioinformatics.

[6]  Knut Reinert,et al.  OpenMS – An open-source software framework for mass spectrometry , 2008, BMC Bioinformatics.

[7]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[8]  Gabriel Padrón,et al.  Proteomics based on peptide fractionation by SDS-free PAGE. , 2008, Journal of proteome research.

[9]  Kai A Reidegeld,et al.  An easy‐to‐use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications , 2008, Proteomics.

[10]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[11]  Robert Burke,et al.  ProteoWizard: open source software for rapid proteomics tools development , 2008, Bioinform..

[12]  Norman W. Paton,et al.  Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines , 2009, Proteomics.

[13]  J. Buhmann,et al.  Protein Identification False Discovery Rates for Very Large Proteomics Data Sets Generated by Tandem Mass Spectrometry* , 2009, Molecular & Cellular Proteomics.

[14]  B. Searle Scaffold: A bioinformatic tool for validating MS/MS‐based proteomic studies , 2010, Proteomics.

[15]  A. Nesvizhskii A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. , 2010, Journal of proteomics.

[16]  Predrag Radivojac,et al.  The importance of peptide detectability for protein identification, quantification, and experiment design in MS/MS proteomics. , 2010, Journal of proteome research.

[17]  William Stafford Noble,et al.  Efficient marginalization to compute protein posterior probabilities from shotgun mass spectrometry data. , 2010, Journal of proteome research.

[18]  K. Resing,et al.  IsoformResolver: A Peptide-Centric Algorithm for Protein Inference , 2011, Journal of proteome research.

[19]  J. Buhmann,et al.  Generic Comparison of Protein Inference Engines* , 2011, Molecular & Cellular Proteomics.

[20]  Gabriel Padrón,et al.  Peptide fractionation by acid pH SDS‐free electrophoresis , 2011, Electrophoresis.

[21]  Lennart Martens,et al.  Bioinformatics challenges in mass spectrometry-driven proteomics. , 2011, Methods in molecular biology.

[22]  Markus Müller,et al.  In silico analysis of accurate proteomics, complemented by selective isolation of peptides. , 2011, Journal of proteomics.

[23]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[24]  Knut Reinert,et al.  OpenMS and TOPP: open source software for LC-MS data analysis. , 2011, Methods in molecular biology.

[25]  O. Kohlbacher,et al.  Probabilistic consensus scoring improves tandem mass spectrometry peptide identification. , 2011, Journal of proteome research.

[26]  Zengyou He,et al.  Protein inference: a review , 2012, Briefings Bioinform..

[27]  Markus Müller,et al.  Isoelectric point optimization using peptide descriptors and support vector machines. , 2012, Journal of proteomics.

[28]  Zengyou He,et al.  A linear programming model for protein inference problem in shotgun proteomics , 2012, Bioinform..

[29]  Predrag Radivojac,et al.  Computational approaches to protein inference in shotgun proteomics , 2012, BMC Bioinformatics.

[30]  Lennart Martens,et al.  Computational proteomics pitfalls and challenges: HavanaBioinfo 2012 workshop report. , 2013, Journal of proteomics.

[31]  Juan Antonio Vizcaíno,et al.  HI-bone: a scoring system for identifying phenylisothiocyanate-derivatized peptides based on precursor mass and high intensity fragment ions. , 2013, Analytical chemistry.

[32]  Eric W. Deutsch,et al.  Combining Results of Multiple Search Engines in Proteomics* , 2013, Molecular & Cellular Proteomics.

[33]  J. Eng,et al.  Comet: An open‐source MS/MS sequence database search tool , 2013, Proteomics.

[34]  Oliver Serang Concerning the accuracy of Fido and parameter choice , 2013, Bioinform..

[35]  K. Gevaert,et al.  SCX charge state selective separation of tryptic peptides combined with 2D-RP-HPLC allows for detailed proteome mapping. , 2013, Journal of proteomics.

[36]  A. Heck,et al.  Next-generation proteomics: towards an integrative view of proteome dynamics , 2012, Nature Reviews Genetics.

[37]  Lukas Käll,et al.  Mass fingerprinting of complex mixtures: protein inference from high-resolution peptide masses and predicted retention times. , 2013, Journal of proteome research.

[38]  Juan Antonio Vizcaíno,et al.  A survey of molecular descriptors used in mass spectrometry based proteomics. , 2014, Current topics in medicinal chemistry.

[39]  Benjamin A. Garcia,et al.  Evaluation of Proteomic Search Engines for the Analysis of Histone Modifications , 2014, Journal of proteome research.

[40]  Martin Eisenacher,et al.  A standardized framing for reporting protein identifications in mzIdentML 1.2 , 2014, Proteomics.

[41]  Yasset Perez-Riverol,et al.  Bioinformatics tools for the functional interpretation of quantitative proteomics results. , 2014, Current topics in medicinal chemistry.

[42]  Akhilesh Pandey,et al.  Proteogenomic analysis of human chromosome 9-encoded genes from human samples and lung cancer tissues. , 2014, Journal of proteome research.

[43]  Yasset Perez-Riverol,et al.  Open source libraries and frameworks for mass spectrometry based proteomics: A developer's perspective , 2014, Biochimica et biophysica acta.

[44]  Pavel A. Pevzner,et al.  Universal database search tool for proteomics , 2014, Nature Communications.

[45]  Martin Eisenacher,et al.  PIA: An Intuitive Protein Inference Engine with a Web-Based User Interface. , 2015, Journal of proteome research.

[46]  Juan Antonio Vizcaíno,et al.  ms-data-core-api: an open-source, metadata-oriented library for computational proteomics , 2015, Bioinform..

[47]  A. Nesvizhskii,et al.  Metrics for the Human Proteome Project 2015: Progress on the Human Proteome and Guidelines for High-Confidence Protein Identification. , 2015, Journal of proteome research.

[48]  Martin Eisenacher,et al.  PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets , 2015, Molecular & Cellular Proteomics.

[49]  Lukas Käll,et al.  Solution to Statistical Challenges in Proteomics Is More Statistics, Not Less. , 2015, Journal of proteome research.

[50]  Edward L. Huttlin,et al.  A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides , 2015, Nature Biotechnology.