Fast computation of adaptive wavelet expansions

In this paper we describe and analyze an algorithm for the fast computation of sparse wavelet coefficient arrays typically arising in adaptive wavelet solvers. The scheme improves on an earlier version from Dahmen et al. (Numer. Math. 86, 49–101, 2000) in several respects motivated by recent developments of adaptive wavelet schemes. The new structure of the scheme is shown to enhance its performance while a completely different approach to the error analysis accommodates the needs put forward by the above mentioned context of adaptive solvers. The results are illustrated by numerical experiments for one and two dimensional examples.

[1]  James M. Keiser,et al.  An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear Partial Differential Equations , 1997 .

[2]  S. Dahlke,et al.  Some Remarks on Quadrature Formulas for Refinable Functions and Wavelets , 2001 .

[3]  Claudio Canuto,et al.  The wavelet element method. Part II: Realization and additional features in 2D and 3D , 1997 .

[4]  Wolfgang Dahmen,et al.  Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..

[5]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[6]  Yuesheng Xu,et al.  Adaptive Wavelet Methods for Elliptic Operator Equations with Nonlinear Terms , 2003, Adv. Comput. Math..

[7]  Reinhard H Stephan Dahlke Adaptive Wavelet Methods for Saddle Point Problems , 1999 .

[8]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[9]  Jacques Liandrat,et al.  On the fast approximation of some nonlinear operators in nonregular wavelet spaces , 1998, Adv. Comput. Math..

[10]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[11]  C. Micchelli,et al.  Using the refinement equation for evaluating integrals of wavelets , 1993 .

[12]  Wolfgang Dahmen,et al.  Sparse Evaluation of Compositions of Functions Using Multiscale Expansions , 2003, SIAM J. Math. Anal..

[13]  CohenAlbert,et al.  Adaptive wavelet methods for elliptic operator equations , 2001 .

[14]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[15]  W. Dahmen Multiscale and Wavelet Methods for Operator Equations , 2003 .

[16]  李幼升,et al.  Ph , 1989 .

[17]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..

[18]  Wolfgang Dahmen,et al.  Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.

[19]  Albert Cohen,et al.  Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.

[20]  WaveletsArne Barinka,et al.  Some Remarks on Quadrature Formulas for Re nableFun tions and , 1999 .

[21]  Wolfgang Dahmen,et al.  Adaptive Wavelet Techniques in Numerical Simulation , 2004 .

[22]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[23]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .