Learning random points from geometric graphs or orderings

Let Xv for v∈V be a family of n iid uniform points in the square 𝒮n=−n/2,n/22 . Suppose first that we are given the random geometric graph G∈G(n,r) , where vertices u and v are adjacent when the Euclidean distance dE(Xu,Xv) is at most r. Let n3/14≪r≪n1/2. Given G (without geometric information), in polynomial time we can with high probability approximately reconstruct the hidden embedding, in the sense that “up to symmetries,” for each vertex v we find a point within distance about r of Xv; that is, we find an embedding with “displacement” at most about r. Now suppose that, instead of G we are given, for each vertex v, the ordering of the other vertices by increasing Euclidean distance from v. Then, with high probability, in polynomial time we can find an embedding with displacement O(logn) .

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  Ery Arias-Castro,et al.  On the estimation of latent distances using graph distances , 2018, 1804.10611.

[3]  François Baccelli,et al.  Community detection on euclidean random graphs , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[4]  Srinivasan Parthasarathy,et al.  A quest to unravel the metric structure behind perturbed networks , 2017, SoCG.

[5]  Sébastien Bubeck,et al.  Testing for high‐dimensional geometry in random graphs , 2014, Random Struct. Algorithms.

[6]  Xavier Pérez-Giménez,et al.  On the relation between graph distance and Euclidean distance in random geometric graphs , 2014, Advances in Applied Probability.

[7]  Ulrike von Luxburg,et al.  Local Ordinal Embedding , 2014, ICML.

[8]  Ulrike von Luxburg,et al.  Density estimation from unweighted k-nearest neighbor graphs: a roadmap , 2013, NIPS.

[9]  Mihai Cucuringu,et al.  ASAP: An Eigenvector Synchronization Algorithm for the Graph Realization Problem , 2013, Distance Geometry.

[10]  Yaron Lipman,et al.  Sensor network localization by eigenvector synchronization over the euclidean group , 2012, TOSN.

[11]  M. Walters Surveys in Combinatorics 2011: Random geometric graphs , 2011 .

[12]  Purnamrita Sarkar,et al.  Theoretical Justification of Popular Link Prediction Heuristics , 2011, IJCAI.

[13]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[14]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[15]  Jehoshua Bruck,et al.  Localization and routing in sensor networks by local angle information , 2005, MobiHoc '05.

[16]  Roger Wattenhofer,et al.  Convergence to Equilibrium in Local Interaction Games , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[17]  Roger Wattenhofer,et al.  Unit disk graph approximation , 2004, DIALM-POMC '04.

[18]  James Aspnes,et al.  On the Computational Complexity of Sensor Network Localization , 2004, ALGOSENSORS.

[19]  Deborah Estrin,et al.  Self-configuring localization systems: Design and Experimental Evaluation , 2004, TECS.

[20]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[21]  Ying Zhang,et al.  Localization from mere connectivity , 2003, MobiHoc '03.

[22]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  S. Janson,et al.  Random Graphs: Janson/Random , 2000 .

[24]  Vin de Silva,et al.  Graph approximations to geodesics on embedded manifolds , 2000 .

[25]  Santosh S. Vempala Random projection: a new approach to VLSI layout , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[26]  David G. Kirkpatrick,et al.  Unit disk graph recognition is NP-hard , 1998, Comput. Geom..

[27]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[28]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .