Classical (Local and Contextual) Probability Model for Bohm–Bell Type Experiments: No-Signaling as Independence of Random Variables

We start with a review on classical probability representations of quantum states and observables. We show that the correlations of the observables involved in the Bohm–Bell type experiments can be expressed as correlations of classical random variables. The main part of the paper is devoted to the conditional probability model with conditioning on the selection of the pairs of experimental settings. From the viewpoint of quantum foundations, this is a local contextual hidden-variables model. Following the recent works of Dzhafarov and collaborators, we apply our conditional probability approach to characterize (no-)signaling. Consideration of the Bohm–Bell experimental scheme in the presence of signaling is important for applications outside quantum mechanics, e.g., in psychology and social science. The main message of this paper (rooted to Ballentine) is that quantum probabilities and more generally probabilities related to the Bohm–Bell type experiments (not only in physics, but also in psychology, sociology, game theory, economics, and finances) can be classically represented as conditional probabilities.

[1]  Yoshiharu Tanaka,et al.  Quantum Adaptivity in Biology: From Genetics to Cognition , 2015, Springer Netherlands.

[2]  Andrei Khrennikov,et al.  Evaluating the Maximal Violation of the Original Bell Inequality by Two-Qudit States Exhibiting Perfect Correlations/Anticorrelations , 2018, Entropy.

[3]  Arthur Fine,et al.  Joint distributions, quantum correlations, and commuting observables , 1982 .

[4]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[5]  Andrei Khrennikov,et al.  Single, Complete, Probability Spaces Consistent With EPR‐Bohm‐Bell Experimental Data , 2009 .

[6]  Marek Czachor,et al.  On some class of random variables leading to violations of the Bell inequality , 1988 .

[7]  Andrei Khrennikov Contextualist viewpoint to Greenberger-Horne-Zeilinger paradox , 2001 .

[8]  Andrei Khrennikov,et al.  Bohm-Bell type experiments: Classical probability approach to (no-)signaling and applications to quantum physics and psychology , 2018, 1812.10826.

[9]  Olga V. Man'ko,et al.  Spin state tomography , 1997 .

[10]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[11]  Andrei Khrennikov,et al.  HAS CHSH-INEQUALITY ANY RELATION TO EPR-ARGUMENT? , 2018, Quantum Bio-Informatics VI.

[12]  C. Abellán,et al.  Generation of Fresh and Pure Random Numbers for Loophole-Free Bell Tests. , 2015, Physical review letters.

[13]  V. I. Man'ko,et al.  Symplectic tomography as classical approach to quantum systems , 1996 .

[14]  Alain Aspect,et al.  Speakable and Unspeakable in Quantum Mechanics: Locality in quantum mechanics: reply to critics , 2004 .

[15]  Andrei Khrennikov,et al.  CHSH Inequality: Quantum Probabilities as Classical Conditional Probabilities , 2014, 1406.4886.

[16]  Sven Nordebo,et al.  Distance dependence of entangled photons in waveguides , 2012 .

[17]  Joseph P. Zbilut,et al.  A Preliminary Experimental Verification On the Possibility of Bell Inequality Violation in Mental States , 2008 .

[18]  Margarita A. Man'ko,et al.  New Entropic Inequalities and Hidden Correlations in Quantum Suprematism Picture of Qudit States † , 2018, Entropy.

[19]  Ehtibar N. Dzhafarov,et al.  Selectivity in Probabilistic Causality: Where Psychology Runs Into Quantum Physics , 2011, 1110.2388.

[20]  Vladimir I. Man’ko,et al.  Positive distribution description for spin states , 1997 .

[21]  G. Jaeger,et al.  Quantum Information: An Overview , 2006 .

[22]  Andrei Khrennikov,et al.  Quantum epistemology from subquantum ontology: quantum mechanics from theory of classical random fields , 2016, 1605.05907.

[23]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[24]  Andrei Khrennikov Quantum probabilities and violation of CHSH-inequality from classical random signals and threshold type properly calibrated detectors , 2011 .

[25]  A. Khrennikov After Bell , 2016, 1603.08674.

[26]  Guillaume Adenier,et al.  Test of the no‐signaling principle in the Hensen loophole‐free CHSH experiment , 2016, 1606.00784.

[27]  Andrei Khrennikov Non-Kolmogorov probability models and modified Bell's inequality , 2000 .

[28]  Randall C. Thompson,et al.  Experimental Test of Local Hidden-Variable Theories , 1976 .

[29]  Andrei Khrennikov,et al.  Bohr against Bell: complementarity versus nonlocality , 2017 .

[30]  Luigi Accardi,et al.  Could we now convince Einstein , 2006 .

[31]  Andrei Khrennikov,et al.  Bell Could Become the Copernicus of Probability , 2014, Open Syst. Inf. Dyn..

[32]  Kristel Michielsen,et al.  Logical inference derivation of the quantum theoretical description of Stern–Gerlach and Einstein–Podolsky–Rosen–Bohm experiments , 2018, Annals of Physics.

[33]  Ehtibar N. Dzhafarov,et al.  On universality of classical probability with contextually labeled random variables , 2017, Journal of Mathematical Psychology.

[34]  Luigi Accardi,et al.  Some loopholes to save quantum nonlocality , 2005 .

[35]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[36]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[37]  Stanley Gudder,et al.  On Hidden-Variable Theories , 1970 .

[38]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[39]  Guillaume Adenier,et al.  Is the fair sampling assumption supported by EPR experiments , 2007 .

[40]  Andrei Khrennikov Towards a Field Model of Prequantum Reality , 2012 .

[41]  Marian Kupczynski,et al.  Can Einstein with Bohr Debate on Quantum Mechanics Be Closed , 2016 .

[42]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[43]  Andrei Khrennikov Contextual viewpoint to quantum stochastics , 2003 .

[44]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[45]  Ehtibar N. Dzhafarov,et al.  Probabilistic Contextuality in EPR/Bohm-type Systems with Signaling Allowed , 2014, 1406.0243.

[46]  Arkady Plotnitsky,et al.  Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature of Quantum-Theoretical Thinking , 2009 .

[47]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[48]  Ehtibar N. Dzhafarov,et al.  Contextuality Analysis of the Double Slit Experiment (with a Glimpse into Three Slits) , 2018, Entropy.

[49]  Abner Shimony,et al.  Hidden-Variables Models of Quantum Mechanics (Noncontextual and Contextual) , 2009, Compendium of Quantum Physics.

[50]  S. P. Gudder Dispersion-free states and the exclusion of hidden variables , 1968 .

[51]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[52]  Andrei Khrennikov,et al.  Towards Experiments to Test Violation of the Original Bell Inequality , 2018, Entropy.

[53]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[54]  Andrei Khrennikov,et al.  ON AN EXPERIMENTAL TEST OF PREQUANTUM THEORY OF CLASSICAL RANDOM FIELDS: AN ESTIMATE FROM ABOVE OF THE COEFFICIENT OF SECOND-ORDER COHERENCE , 2012 .

[55]  N. David Mermin,et al.  Boojums All The Way Through , 1990 .

[56]  T. Gerrits,et al.  Challenging local realism with human choices , 2018, Nature.

[57]  Andrei Khrennikov,et al.  Unconditional Quantum Correlations do not Violate Bell’s Inequality , 2015, 1503.08016.

[58]  Stanley P. Gudder,et al.  Hidden Variables in Quantum Mechanics Reconsidered , 1968 .

[59]  Andrei Khrennikov,et al.  Contextual Approach to Quantum Formalism , 2009 .

[60]  Andrei Khrennikov,et al.  On the equivalence of the Clauser–Horne and Eberhard inequality based tests , 2014, 1403.2811.

[61]  Ru Zhang,et al.  Is there contextuality in behavioural and social systems? , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  Matt Jones,et al.  On contextuality in behavioural data , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[63]  Jason Gallicchio,et al.  Testing Bell's inequality with cosmic photons: closing the setting-independence loophole. , 2013, Physical review letters.

[64]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[65]  A.V. Platonov,et al.  Using quantum mechanical framework for language modeling and information retrieval , 2018, 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT).

[66]  Ehtibar N. Dzhafarov,et al.  Snow Queen Is Evil and Beautiful: Experimental Evidence for Probabilistic Contextuality in Human Choices , 2017, Decision.

[67]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[68]  Ehtibar N. Dzhafarov,et al.  Context-Content Systems of Random Variables: The Contextuality-by-Default Theory , 2015, 1511.03516.

[69]  Andrei Khrennikov Schrödinger dynamics as the Hilbert space projection of a realistic contextual probabilistic dynamics , 2005 .

[70]  T. Jennewein,et al.  Experimental three-photon quantum nonlocality under strict locality conditions , 2013, Nature Photonics.

[71]  Andrei Khrennikov,et al.  Prequantum Classical Statistical Field Theory: Schrödinger Dynamics of Entangled Systems as a Classical Stochastic Process , 2011 .

[72]  Andrei Khrennikov,et al.  Bell-Boole Inequality: Nonlocality or Probabilistic Incompatibility of Random Variables? , 2008, Entropy.

[73]  Arkady Plotnitsky,et al.  Niels Bohr and Complementarity: An Introduction , 2012 .

[74]  Andrei Khrennikov,et al.  Classical versus quantum probability: Comments on the paper “On universality of classical probability with contextually labeled random variables” by E. Dzhafarov and M. Kon , 2018, Journal of Mathematical Psychology.

[75]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[76]  Marian Kupczynski,et al.  Closing the Door on Quantum Nonlocality , 2018, Entropy.

[77]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[78]  Igor Volovich,et al.  Local realism, contextualism and loopholes in Bell's experiments , 2002 .

[79]  Gregg Jaeger,et al.  Quantum Objects: Non-Local Correlation, Causality and Objective Indefiniteness in the Quantum World , 2013 .

[80]  Rupert Ursin,et al.  Violation of local realism with freedom of choice , 2008, Proceedings of the National Academy of Sciences.

[81]  Stefano Pironio,et al.  Random 'choices' and the locality loophole , 2015, 1510.00248.

[82]  Andrei Khrennikov,et al.  After Bell , 2016, 1603.08674.

[83]  Marian Kupczynski,et al.  Can we close the Bohr–Einstein quantum debate? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[84]  R. N. Schouten,et al.  Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km , 2015, 1508.05949.

[85]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[86]  M. Born,et al.  Statistical Interpretation of Quantum Mechanics. , 1955, Science.

[87]  L. E. Ballentine Interpretations of Probability and Quantum Theory , 2001 .

[88]  Richard Phillips Feynman,et al.  The Concept of Probability in Quantum Mechanics , 1951 .