Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls

This paper deals with an optimal stochastic linear-quadratic (LQ) control problem in infinite time horizon, where the diffusion term in dynamics depends on both the state and the control variables. In contrast to the deterministic case, we allow the control and state weighting matrices in the cost functional to be indefinite. This leads to an indefinite LQ problem, which may still be well posed due to the deep nature of uncertainty involved. The problem gives rise to a stochastic algebraic Riccati equation (SARE), which is, however, fundamentally different from the classical algebraic Riccati equation as a result of the indefinite nature of the LQ problem. To analyze the SARE, we introduce linear matrix inequalities (LMIs) whose feasibility is shown to be equivalent to the solvability of the SARE. Moreover, we develop a computational approach to the SARE via a semi-definite programming associated with the LMIs. Finally, numerical experiments are reported to illustrate the proposed approach.

[1]  A. Bensoussan Lectures on stochastic control , 1982 .

[2]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[3]  L. Ghaoui,et al.  Robust state-feedback stabilization of jump linear systems , 1996 .

[4]  A. Pritchard,et al.  Stability radii of linear systems with respect to stochastic perturbations , 1992 .

[5]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[6]  Xun Yu Zhou,et al.  Stochastic Linear Quadratic Regulators with Indefinite Control Weight Costs. II , 2000, SIAM J. Control. Optim..

[7]  Duan Li,et al.  Explicit Efficient Frontier of a Continuous-Time Mean Variance Portfolio Selection Problem , 1998, Control of Distributed Parameter and Stochastic Systems.

[8]  V. Ugrinovskii Robust H∞ infinity control in the presence of stochastic uncertainty , 1998 .

[9]  R. Nikoukhah,et al.  LMITOOL: a package for LMI optimization , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[10]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[11]  D. Hinrichsen,et al.  Stochastic $H^\infty$ , 1998 .

[12]  Faris A. Badawi On a quadratic matrix inequality and the corresponding algebraic Riccati equation , 1982 .

[13]  S. Bittanti,et al.  The Riccati equation , 1991 .

[14]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[15]  W. Wonham On a Matrix Riccati Equation of Stochastic Control , 1968 .

[16]  R. Penrose On best approximate solutions of linear matrix equations , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  J. Bismut Linear Quadratic Optimal Stochastic Control with Random Coefficients , 1976 .

[18]  Stephen P. Boyd,et al.  A primal—dual potential reduction method for problems involving matrix inequalities , 1995, Math. Program..

[19]  François Delebecque,et al.  LMITOOL: a Package for LMI Optimization in Scilab User's Guide , 1995 .

[20]  L. E. Faibusovich Matrix Riccati inequality: Existence of solutions , 1987 .

[21]  R. Penrose A Generalized inverse for matrices , 1955 .

[22]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[23]  Andrew E. B. Lim,et al.  Stochastic optimal LQR control with integral quadratic constraints and indefinite control weights , 1999, IEEE Trans. Autom. Control..

[24]  W. Wonham Random differential equations in control theory , 1970 .

[25]  D. Hinrichsen,et al.  Stochastic H∞ , 1998 .

[26]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in System and Control Theory , 1994, Studies in Applied Mathematics.

[27]  Leonid Khachiyan,et al.  On the Complexity of Semidefinite Programs , 1997, J. Glob. Optim..

[28]  Ruth F. Curtain,et al.  Comparison theorems for infinite-dimensional Riccati equations , 1990 .

[29]  Mark H. A. Davis Linear estimation and stochastic control , 1977 .

[30]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[31]  V. Ugrinovskii Robust H 2 control in the presence of stochastic uncertainty , 2001 .

[32]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[33]  A. Ran,et al.  Existence and comparison theorems for algebraic Riccati equations for continuous- and discrete-time systems , 1988 .

[34]  A. Albert Conditions for Positive and Nonnegative Definiteness in Terms of Pseudoinverses , 1969 .