Front-end ASIC for high resolution X-ray spectrometers

We present an application specific integrated circuit (ASIC) for high-resolution x-ray spectrometers. The ASIC is designed to read out signals from a pixelated silicon drift detector (SDD). Each hexagonal pixel has an area of 15 mm2 and an anode capacitance of less than 100 fF. There is no integrated Field Effect transistor (FET) in the pixel, rather, the readout is done by wire- bonding the anodes to the inputs of the ASIC. The ASIC provides 14 channels of low-noise charge amplification, high-order shaping with baseline stabilization, and peak detection with analog memory. The readout is sparse and based on low voltage differential signaling. An interposer provides all the interconnections required to bias and operate the system. The channel dissipates 1.6 mW. The complete 14-pixel unit covers an area of 210 mm2, dissipates 12 mW cm-2, and can be tiled to cover an arbitrarily large detection area. We measured a preliminary resolution of 172 eV at -35 C on the 6 keV peak of a 55Fe source.

[1]  J. Fried,et al.  Development of Thin-Window Silicon Drift Detector for X-ray spectroscopy , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[2]  Heike Soltau,et al.  Optimized readout methods of silicon drift detectors for high-resolution X-ray spectroscopy , 2006 .

[3]  M. Porro,et al.  An 8-Channel DRAGO Readout Circuit for Silicon Detectors With Integrated Front-End JFET , 2006, IEEE Transactions on Nuclear Science.

[4]  L. Bombelli,et al.  The SIDDHARTA chip: a CMOS multi-channel circuit for Silicon Drift Detectors Readout in Exotic Atoms Research , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[5]  M. Porro,et al.  A CMOS Readout Circuit for Silicon Drift Detectors With on-Clip JFET and Feedback Capacitor , 2006, IEEE Transactions on Nuclear Science.

[6]  S. Buzzetti,et al.  XRF spectrometers based on monolithic arrays of silicon drift detectors: elemental mapping analyses and advanced detector structures , 2006, IEEE Transactions on Nuclear Science.

[7]  G. De Geronimo,et al.  MOSFET optimization in deep submicron technology for charge amplifiers , 2005, IEEE Transactions on Nuclear Science.

[8]  Pavel Rehak,et al.  Review of semiconductor drift detectors , 2005 .

[9]  C. Guazzoni,et al.  XRF spectrometers based on monolithic arrays of silicon drift detectors: elemental mapping analyses and advanced detector structures , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[10]  K. Hansen,et al.  Spectral peak shift of Si-drift detectors with integrated JFETs , 2004, IEEE Transactions on Nuclear Science.

[11]  J. Kemmer,et al.  Silicon drift detectors with enlarged sensitive areas , 2004 .

[12]  L. Nanver,et al.  Novel low-temperature processing of low noise SDDs with on-detector electronics , 2004 .

[13]  H. Soltau,et al.  C05 Silicon Drift Detectors for High Resolution, High Count Rate X-ray Spectroscopy at Room Temperature , 2003, Powder Diffraction.

[14]  K. Mathieson,et al.  Charge sharing in silicon pixel detectors , 2002 .

[15]  A. Kandasamy,et al.  Analog CMOS peak detect and hold circuits. Part 2. The two-phase offset-free and derandomizing configuration , 2002 .

[16]  P. Lechner,et al.  Charge sensitive preamplifier with continuous reset by means of the gate-to-drain current of the JFET integrated on the detector , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[17]  C. Fiorini,et al.  A monolithic array of silicon drift detectors for high-resolution gamma-ray imaging , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[18]  G. De Geronimo,et al.  A CMOS baseline holder (BLH) for readout ASICs , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).

[19]  G. De Geronimo,et al.  A CMOS fully compensated continuous reset system , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).

[20]  B. Ludewigt,et al.  Spectral response of multi-element silicon X-ray detectors , 1998 .

[21]  U. Prechtel,et al.  Spiral silicon drift detectors , 1989 .

[22]  Pavel Rehak,et al.  Semiconductor drift chamber: an application of a novel charge transport scheme , 1984 .

[23]  K. Husimi,et al.  Direct synthesis of the Gaussian filter for nuclear pulse amplifiers , 1976 .

[24]  C. Fiorini A charge sensitive preamplifier for high peak stability in spectroscopic measurements at high counting rates , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[25]  J. Fried,et al.  Front-end ASIC for a GEM based time projection chamber , 2004, IEEE Transactions on Nuclear Science.

[26]  P. Řehák,et al.  P-type one-sided hexagonal spiral drift detectors , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[27]  J. Kemmer,et al.  Large area silicon drift detectors for new applications in nuclear medicine imaging , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[28]  M. Davidson MOON ROCKS UNDER THE MICROSCOPE , 1993 .