Stability analysis of homogenized stone column reinforced foundations using a numerical yield design approach

This paper deals with the ultimate bearing capacity of soft clayey soils, rein-forced by stone columns, analyzed in the framework of the yield design theory. Since such geotechnical structures are almost impossible to analyze directly due to the strong heterogeneity of the reinforced soil, an alternative homogenization approach is advocated here. First, numerical lower and upper bound estimates for the macroscopic strength criterion of the stone column reinforced soil are approximated in a rigorous way with convex ellipsoidal sets, which makes the approximated criteria much easier to handle than the initial ones. Then, both static and kinematic approaches are carried out numerically on the homoge-nized problem using the above approximated macroscopic strength domains in an adapted finite element method. The whole numerical procedure is applied on one classical geotechnical problem: the ultimate bearing capacity of stone column reinforced foundations. The strength capacity of the structure is rigor-ously framed and the efficiency of the proposed numerical method is highlighted in terms of accuracy and calculation time.

[1]  P. de Buhan,et al.  Ultimate bearing capacity of a foundation reinforced by columns or cross trenches under inclined loads: a homogenization approach , 2015 .

[2]  Xi-Qiao Feng,et al.  Limit analysis of ductile composites based on homogenization theory , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Guido Pellegrini,et al.  Yield design of reinforced earth walls by a homogenization method , 1989 .

[4]  L MichalowskiRadoslaw,et al.  Stability assessment of slopes with cracks using limit analysis , 2013 .

[5]  Chris Martin,et al.  Upper bound limit analysis using simplex strain elements and second‐order cone programming , 2007 .

[6]  D ClarkeSamuel,et al.  Modelling discrete soil reinforcement in numerical limit analysis , 2013 .

[7]  J. Pastor,et al.  Mise en oeuvre numerique des methodes de l'analyse limite pour les materiaux de von mises et de Coulomb standards en deformation plane , 1976 .

[8]  P. de Buhan,et al.  A homogenization approach to the yield strength of composite materials , 1991 .

[9]  Ghazi Hassen,et al.  Finite element implementation of a homogenized constitutive law for stone column-reinforced foundation soils, with application to the design of structures , 2010 .

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  Mounir Bouassida,et al.  A homogenization approach to estimate the ultimate bearing capacity of a stone column reinforced foundation , 2007 .

[12]  H. Li,et al.  Limit analysis of composite materials with anisotropic microstructures: A homogenization approach , 2011 .

[13]  P. de Buhan,et al.  Calculation of the critical height of a homogenized reinforced soil wall: A numerical approach , 1994 .

[14]  Andrei V. Lyamin,et al.  Limit analysis solutions for three dimensional undrained slopes , 2009 .

[15]  Joseph Pastor,et al.  Limit analysis and Gurson's model , 2005 .

[16]  Joel A. Tarr,et al.  International Conference on the City and Technology-Ecole Nationale des Ponts et Chaussees, Paris, December 12-15, 1983 , 1985 .

[17]  Patrick de Buhan,et al.  Yield surface approximation for lower and upper bound yield design of 3D composite frame structures , 2013 .

[18]  Radoslaw L. Michalowski,et al.  CONTINUUM VERSUS STRUCTURAL APPROACH TO STABILITY OF REINFORCED SOIL , 1995 .

[19]  John Lysmer,et al.  LIMIT ANALYSIS OF PLANE PROBLEMS IN SOIL MECHANICS , 1970 .

[20]  Andrzej Sawicki,et al.  LIMIT ANALYSIS OF COHESIVE SLOPES REINFORCED WITH GEOTEXTILES , 1989 .

[21]  P. de Buhan,et al.  A homogenization method for estimating the bearing capacity of soils reinforced by columns , 2005 .

[22]  Abdul-Hamid Soubra,et al.  Upper-Bound Solutions for Bearing Capacity of Foundations , 1999 .

[23]  Jyant Kumar,et al.  Bearing capacity of strip foundations reinforced with geogrid sheets by using upper bound finite‐element limit analysis , 2013 .

[24]  A. Pecker,et al.  Ultimate bearing capacity of shallow foundations under inclined and eccentric loads. I: Purely cohesive soil , 1995 .

[25]  Jean Salençon,et al.  Calcul à la rupture et analyse limite , 1983 .

[26]  Pascal Francescato,et al.  Yield criterion for porous media with spherical voids , 2006 .

[27]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[28]  Scott W. Sloan,et al.  Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming , 2007 .

[29]  H. J. Priebe,et al.  Design of vibro replacement , 1996 .

[30]  Ghazi Hassen,et al.  A homogenization approach for assessing the yield strength properties of stone column reinforced soils , 2013 .

[31]  P. de Buhan,et al.  Stability analysis of an embankment resting upon a column-reinforced soil , 2011 .

[32]  J. Pastor,et al.  Lower and upper numerical bounds to the off-axis strength of unidirectional fiber-reinforced composites by limit analysis methods , 1997 .

[33]  Jyant Kumar,et al.  Vertical uplift capacity of two interfering horizontal anchors in sand using an upper bound limit analysis , 2009 .

[34]  S. Sloan Geotechnical stability analysis , 2013 .

[35]  C. Martin,et al.  Lower bound limit analysis of cohesive‐frictional materials using second‐order cone programming , 2006 .

[36]  Antonio Huerta,et al.  Stability of anchored sheet wall in cohesive‐frictional soils by FE limit analysis , 2013 .

[37]  Ghazi Hassen,et al.  Numerical assessment of the macroscopic strength criterion of reinforced soils using semidefinite programming , 2014 .