Characterizing the number of coloured m-ary partitions modulo m, with and without gaps

Abstract In a pair of recent papers, Andrews, Fraenkel and Sellers provide a complete characterization for the number of  m -ary partitions modulo  m , with and without gaps. In this paper we extend these results to the case of coloured  m -ary partitions, with and without gaps. Our method of proof is different, giving explicit expansions for the generating functions modulo  m .

[1]  James A. Sellers,et al.  Unique Path Partitions: Characterization and Congruences , 2011, 1107.1156.

[2]  G. Andrews Congruence properties of the m-ary partition function , 1971 .

[3]  Øystein J. Rødseth Some arithmetical properties of m-ary partitions , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Michael D. Hirschhorn,et al.  Congruence properties of the binary partition function , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  George E. Andrews,et al.  m-ary partitions with no gaps: A characterization modulo m , 2016, Discret. Math..

[6]  George E. Andrews,et al.  Characterizing the Number of m-ary Partitions Modulo m , 2015, Am. Math. Mon..