Proteome Analysis of Separated Male and Female Gametocytes Reveals Novel Sex-Specific Plasmodium Biology

Gametocytes, the precursor cells of malaria-parasite gametes, circulate in the blood and are responsible for transmission from host to mosquito vector. The individual proteomes of male and female gametocytes were analyzed using mass spectrometry, following separation by flow sorting of transgenic parasites expressing green fluorescent protein, in a sex-specific manner. Promoter tagging in transgenic parasites confirmed the designation of stage and sex specificity of the proteins. The male proteome contained 36% (236 of 650) male-specific and the female proteome 19% (101 of 541) female-specific proteins, but they share only 69 proteins, emphasizing the diverged features of the sexes. Of all the malaria life-cycle stages analyzed, the male gametocyte has the most distinct proteome, containing many proteins involved in flagellar-based motility and rapid genome replication. By identification of gender-specific protein kinases and phosphatases and using targeted gene disruption of two kinases, new sex-specific regulatory pathways were defined.

[1]  Michael Gribskov,et al.  Methods and Statistics for Combining Motif Match Scores , 1998, J. Comput. Biol..

[2]  K. Williamson,et al.  Recombinant Pfs230, a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infectivity of Plasmodium falciparum to mosquitoes. , 1995, Molecular and biochemical parasitology.

[3]  M Lanzer,et al.  Control of gene expression in Plasmodium falciparum. , 1998, Molecular and biochemical parasitology.

[4]  L. Ostrowski,et al.  A Proteomic Analysis of Human Cilia , 2002, Molecular & Cellular Proteomics.

[5]  D. Kaslow,et al.  Transmission-blocking vaccines: uses and current status of development. , 1997, International journal for parasitology.

[6]  J. Carlton,et al.  Maternal inheritance of extrachromosomal DNA in malaria parasites. , 1994, Molecular and biochemical parasitology.

[7]  R. Sinden,et al.  Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito , 1998, Nature.

[8]  K. Inaba Molecular Architecture of the Sperm Flagella: Molecules for Motility and Signaling , 2003, Zoological science.

[9]  R. Sinden,et al.  The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro , 1997, Parasitology.

[10]  D. Chakrabarti,et al.  PfPK7, an atypical MEK‐related protein kinase, reflects the absence of classical three‐component MAPK pathways in the human malaria parasite Plasmodium falciparum , 2004, Molecular microbiology.

[11]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[12]  R. Sinden,et al.  Mitosis and meiosis in malarial parasites. , 1991, Acta Leidensia.

[13]  C. Janse,et al.  Plasmodium berghei: the application of cultivation and purification techniques to molecular studies of malaria parasites. , 1995, Parasitology today.

[14]  C. Janse,et al.  In vitro formation of ookinetes and functional maturity of Plasmodium berghei gametocytes , 1985, Parasitology.

[15]  N Srinivasan,et al.  A genomic perspective of protein kinases in Plasmodium falciparum , 2004, Proteins.

[16]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[17]  C. Janse,et al.  Flow cytometry in malaria detection. , 1994, Methods in cell biology.

[18]  Neil Hall,et al.  Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry , 2002, Nature.

[19]  N. Ahn,et al.  Signal transduction through MAP kinase cascades. , 1998, Advances in cancer research.

[20]  Pauline Ward,et al.  Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote , 2004, BMC Genomics.

[21]  M. van der Ploeg,et al.  DNA synthesis in Plasmodium berghei during asexual and sexual development. , 1986, Molecular and biochemical parasitology.

[22]  Joanne M. Morrisey,et al.  Unidirectional dominance of cytoplasmic inheritance in two genetic crosses of Plasmodium falciparum , 1993, Molecular and cellular biology.

[23]  H. Tanke,et al.  Plasmodium species: flow cytometry and microfluorometry assessments of DNA content and synthesis. , 1987, Experimental parasitology.

[24]  Steven P. Gross,et al.  Molecular Motors: Strategies to Get Along , 2004, Current Biology.

[25]  D. Rawlings,et al.  Alpha-tubulin II is a male-specific protein in Plasmodium falciparum. , 1992, Molecular and biochemical parasitology.

[26]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[27]  R. Tewari,et al.  Calcium and a Calcium-Dependent Protein Kinase Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite , 2004, Cell.

[28]  P. Brown,et al.  Shotgun DNA microarrays and stage‐specific gene expression in Plasmodium falciparum malaria , 2000, Molecular microbiology.

[29]  C. Janse,et al.  Plasmodium berghei: gametocyte production, DNA content, and chromosome-size polymorphisms during asexual multiplication in vivo. , 1989, Experimental parasitology.

[30]  H. Stunnenberg,et al.  A Central Role for P48/45 in Malaria Parasite Male Gamete Fertility , 2001, Cell.

[31]  R. Carter Transmission blocking malaria vaccines. , 2001, Vaccine.

[32]  R. Sauerwein,et al.  Plasmodium berghei ANKA: purification of large numbers of infectious gametocytes. , 1998, Experimental parasitology.

[33]  R. Carter,et al.  A MAP kinase homologue from the human malaria parasite, Plasmodium falciparum. , 1996, Gene.

[34]  L. Meijer,et al.  Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum Biochemical properties and possible involvement in MAPK regulation. , 2001, European journal of biochemistry.

[35]  C. Janse,et al.  Malaria parasites: genomes and molecular biology. , 2004 .

[36]  L. Bannister,et al.  The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. , 1999, Protist.

[37]  Chris J Janse,et al.  A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. , 2004, Molecular and biochemical parasitology.

[38]  T. Hunter,et al.  The NIMA kinase: a mitotic regulator in Aspergillus nidulans and vertebrate cells. , 1995, Progress in cell cycle research.

[39]  T. Hunter,et al.  Never say never. The NIMA-related protein kinases in mitotic control. , 2003, Trends in cell biology.

[40]  C. Janse,et al.  Functional Equivalence of Structurally Distinct Ribosomes in the Malaria Parasite, Plasmodium berghei * , 2001, The Journal of Biological Chemistry.

[41]  Timothy Williamson,et al.  Never say never , 1994 .

[42]  E. Arama,et al.  NIMA-related kinases: isolation and characterization of murine nek3 and nek4 cDNAs, and chromosomal localization of nek1, nek2 and nek3. , 1999, Gene.

[43]  M. van der Ploeg,et al.  Rapid repeated DNA replication during microgametogenesis and DNA synthesis in young zygotes of Plasmodium berghei. , 1986, Transactions of the Royal Society of Tropical Medicine and Hygiene.