Patterns Generation and Spatial Entropy in Two-dimensional Lattice Models

Abstract. Patterns generation problems in two-dimensional lattice models are studied. Let S be the set of p symbols and Z2l×2l, l ≥ 1, be a fixed finite square sublattice of Z . Function U : Z2l×2l → S is called local pattern. Given a basic set B of local patterns, a unique transition matrix A2 which is a q × q matrix, q = p 2 , can be defined. The recursive formulae of higher transition matrix An on Z2l×nl have already been derived [4]. Now A m n , m ≥ 1, contains all admissible patterns on Z(m+1)l×nl which can be generated by B. In this paper, the connecting operator Cm, which comprises all admissible patterns on Z(m+1)l×2l, is carefully arranged. Cm can be used to extend An to A m n+1 recursively for n ≥ 2. Furthermore, the lower bound of spatial entropy h(A2) can be derived through the diagonal part of Cm. This yields a powerful method for verifying the positivity of spatial entropy which is important in examining the complexity of the set of admissible global patterns. The trace operator Tm of Cm can also be introduced. In the case of symmetric A2, T2m gives a good estimate of the upper bound on spatial entropy. Combining Cm with Tm helps to understand the patterns generation problems more systematically.

[1]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[2]  Chen Ning Yang,et al.  One-Dimensional Chain of Anisotropic Spin-Spin Interactions. I. Proof of Bethe's Hypothesis for Ground State in a Finite System , 1966 .

[3]  James P. Keener,et al.  Propagation and its failure in coupled systems of discrete excitable cells , 1987 .

[4]  E. Lieb Exact Solution of the F Model of An Antiferroelectric , 1967 .

[5]  G. Ermentrout Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators , 1992 .

[6]  Firth Optical memory and spatial chaos. , 1988, Physical review letters.

[7]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[8]  John Mallet-Paret,et al.  Pattern Formation and Spatial Chaos in Spatially Discrete Evolution Equations , 1995 .

[9]  Peter W. Bates,et al.  A Discrete Convolution Model¶for Phase Transitions , 1999 .

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[12]  Thomas Erneux,et al.  Propagation failure in arrays of coupled bistable chemical reactors , 1992 .

[13]  Wen-Wei Lin,et al.  The Spatial Entropy of Two-Dimensional Subshifts of Finite Type , 2000, Int. J. Bifurc. Chaos.

[14]  Jung-Chao Ban,et al.  Patterns generation and transition matrices in multi-dimensional lattice models , 2005 .

[15]  Chih-Wen Shih,et al.  Exact Number of Mosaic Patterns in Cellular Neural Networks , 2001, Int. J. Bifurc. Chaos.

[16]  Peter W. Bates,et al.  Attractors for Lattice Dynamical Systems , 2001, Int. J. Bifurc. Chaos.

[17]  Chen Ning Yang,et al.  One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System , 1966 .

[18]  Jonq Juang,et al.  Cellular Neural Networks: Mosaic Pattern and Spatial Chaos , 2000, SIAM J. Appl. Math..

[19]  G. Ermentrout,et al.  On chains of oscillators forced at one end , 1991 .

[20]  Leon O. Chua,et al.  Pattern formation properties of autonomous Cellular Neural Networks , 1995 .

[21]  E. Lieb Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric , 1967 .

[22]  A. E. H. TUTTON,et al.  Ice , 1938, Nature.

[23]  Denis Noble,et al.  Simulating cardiac sinus and atrial network dynamics on the Connection Machine , 1993 .

[24]  Elliott H. Lleb Residual Entropy of Square Ice , 1967 .

[25]  L.O. Chua,et al.  Cellular neural networks , 1993, 1988., IEEE International Symposium on Circuits and Systems.

[26]  Wen-Wei Lin,et al.  Cellular Neural Networks: Local Patterns for General Templates , 2000, Int. J. Bifurc. Chaos.

[27]  Cheng-Hsiung Hsu,et al.  Spatial Disorder of Cellular Neural Networks - with Biased Term , 2002, Int. J. Bifurc. Chaos.

[28]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[29]  John W. Cahn,et al.  Theory of crystal growth and interface motion in crystalline materials , 1960 .

[30]  Song-Sun Lin,et al.  On the Spatial Entropy and Patterns of Two-Dimensional Cellular Neural Networks , 2002, Int. J. Bifurc. Chaos.

[31]  Shui-Nee Chow,et al.  DYNAMICS OF LATTICE DIFFERENTIAL EQUATIONS , 1996 .

[32]  L. Chua Cnn: A Paradigm for Complexity , 1998 .

[33]  Jonathan G. Bell,et al.  Some threshold results for models of myelinated nerves , 1981 .

[34]  R. Baxter Eight-Vertex Model in Lattice Statistics , 1971 .

[35]  Cheng-Hsiung Hsu,et al.  Spatial disorder of CNN - with Asymmetric output Function , 2001, Int. J. Bifurc. Chaos.

[36]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[37]  Michael E. Paul,et al.  Matrix Subshifts for Zv Symbolic Dynamics , 1981 .

[38]  Shui-Nee Chow,et al.  Pattern formation and spatial chaos in lattice dynamical systems. II , 1995 .

[39]  Song-Sun Lin,et al.  Spatial Entropy of One-Dimensional Cellular Neural Network , 2000, Int. J. Bifurc. Chaos.

[40]  J. Keener,et al.  The effects of discrete gap junction coupling on propagation in myocardium. , 1991, Journal of theoretical biology.

[41]  Bard Ermentrout,et al.  Inhibition-Produced Patterning in Chains of Coupled Nonlinear Oscillators , 1994, SIAM J. Appl. Math..

[42]  Chen Ning Yang,et al.  One-dimensional chain of anisotropic spin-spin interactions , 1966 .

[43]  Firth Wj,et al.  Optical memory and spatial chaos. , 1988 .

[44]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[45]  Chris Cosner,et al.  Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons , 1984 .

[46]  E. Lieb Exact Solution of the Problem of the Entropy of Two-Dimensional Ice , 1967 .