Quasigeostrophic equation with random initial data in negative-order Sobolev space

[1]  Ting Zhang,et al.  Almost sure existence of global weak solutions for incompressible MHD equations in negative-order Sobolev space , 2017 .

[2]  Ting Zhang,et al.  Random Data Cauchy Theory for the Generalized Incompressible Navier–Stokes Equations , 2012 .

[3]  Natasa Pavlovic,et al.  Almost Sure Existence of Global Weak Solutions for Supercritical Navier-Stokes Equations , 2012, SIAM J. Math. Anal..

[4]  Chao Deng,et al.  Random-data Cauchy problem for the Navier–Stokes equations on T3 , 2011 .

[5]  Ting Zhang,et al.  Random data Cauchy theory for the incompressible three dimensional Navier–Stokes equations , 2011 .

[6]  N. Tzvetkov,et al.  Probabilistic well-posedness for the cubic wave equation , 2011, 1103.2222.

[7]  L. Debnath Geophysical Fluid Dynamics , 2008 .

[8]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations I: local theory , 2007, 0707.1447.

[9]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations II: a global existence result , 2007, 0707.1448.

[10]  Pierre Gilles Lemarié-Rieusset,et al.  Recent Developments in the Navier-Stokes Problem , 2002 .

[11]  Andrew J. Majda,et al.  Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity , 1996 .

[12]  J. Thomas Beale,et al.  Validity of the quasigeostrophic model for large-scale ow in the atmosphere and ocean , 1994 .

[13]  Steven Schochet,et al.  Singular limits in bounded domains for quasilinear symmetric hyperbolic systems having a vorticity equation , 1987 .

[14]  P. E. Kloeden,et al.  The dissipative quasigeostrophic equations , 1981 .

[15]  Alex Mahalov,et al.  Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids , 1997 .

[16]  Darryl D. Holm Hamiltonian formulation of the baroclinic quasigeostrophic fluid equations , 1986 .