Spin orbit torques in ferrimagnetic GdFeCo with various compositions

Compositional dependence of spin–orbit torque (SOT) of the bilayer comprised of Ta and ferrimagnetic GdFeCo was investigated. Critical current density of SOT switching Jsw of the GdFeCo/Ta bilayers did not vary with Gd composition x, and were found to exhibit roughly Jsw = 11 MA cm−2. Two orthogonal components of SOT, damping-like torque τDL and field-like torque τFL were estimated by measuring harmonic Hall resistance under in-plane fields parallel and perpendicular to the AC current, respectively. The absolute values of SOT, ∣τ DL∣ and ∣τFL∣, were confirmed to be roughly constant within 22 ≤ x ≤ 28. On the other hand, the sign of τFL changed across the compensation composition. These results suggest that the injected spin current is considered to exert a torque to the transition metal FeCo moment rather than to the rare earth Gd moment.

[1]  Qihan Zhang,et al.  Tuning Slonczewski-like torque and Dzyaloshinskii–Moriya interaction by inserting a Pt spacer layer in Ta/CoFeB/MgO structures , 2018, Applied Physics Letters.

[2]  K. Ando,et al.  Intrinsic Spin-Orbit Torque Arising from the Berry Curvature in a Metallic-Magnet/Cu-Oxide Interface. , 2018, Physical review letters.

[3]  S. Salahuddin,et al.  Spin-orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo , 2017 .

[4]  Hyunsoo Yang,et al.  Anomalous Current-Induced Spin Torques in Ferrimagnets near Compensation. , 2017, Physical review letters.

[5]  T. Ono,et al.  Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. , 2017, Nature materials.

[6]  H. Almasi,et al.  Spin-orbit torque switching of synthetic antiferromagnets , 2017, 1701.02395.

[7]  H. Ohno,et al.  A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. , 2016, Nature nanotechnology.

[8]  F. Hellman,et al.  Spin-Orbit Torques in ferrimagnetic GdFeCo Alloys , 2016, 1605.09498.

[9]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.

[10]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[11]  Wei Zhang,et al.  Spin Hall effects in metallic antiferromagnets. , 2014, Physical review letters.

[12]  Robert A. Buhrman,et al.  Macrospin modeling of sub-ns pulse switching of perpendicularly magnetized free layer via spin-orbit torques for cryogenic memory applications , 2014 .

[13]  Kang L. Wang,et al.  Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. , 2014, Nature materials.

[14]  J. S. Lee,et al.  Spin-transfer torque generated by a topological insulator , 2014, Nature.

[15]  S. Auffret,et al.  Ultrafast magnetization switching by spin-orbit torques , 2013, 1310.5586.

[16]  H. Ohno,et al.  Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements , 2013, 1310.4879.

[17]  S. Iwata,et al.  Temperature Dependence of Critical Current Density of Spin Transfer Torque Switching Amorphous GdFeCo for Thermally Assisted MRAM , 2013, IEEE Transactions on Magnetics.

[18]  S. Iwata,et al.  Spin Transfer Torque Switching of Amorphous GdFeCo With Perpendicular Magnetic Anisotropy for Thermally Assisted Magnetic Memories , 2012, IEEE Transactions on Magnetics.

[19]  D. Ralph,et al.  Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. , 2012, Physical review letters.

[20]  D. Ralph,et al.  Spin transfer torque devices utilizing the giant spin Hall effect of tungsten , 2012, 1208.1711.

[21]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[22]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[23]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[24]  Tom Zhong,et al.  A Study of Write Margin of Spin Torque Transfer Magnetic Random Access Memory Technology , 2010, IEEE Transactions on Magnetics.

[25]  T. Kato,et al.  Compositional Dependence of g-Factor and Damping Constant of GdFeCo Amorphous Alloy Films , 2008, IEEE Transactions on Magnetics.

[26]  S. Maekawa,et al.  Electric manipulation of spin relaxation using the spin Hall effect. , 2008, Physical review letters.

[27]  M. Naito,et al.  Intrinsic spin Hall effect and orbital Hall effect in 4 d and 5 d transition metals , 2007, 0711.1263.

[28]  Arata Tsukamoto,et al.  Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation , 2006 .

[29]  Eiji Saitoh,et al.  Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect , 2006 .

[30]  S. Murakami,et al.  Dissipationless Quantum Spin Current at Room Temperature , 2003, Science.

[31]  Shigeru Tsunashima,et al.  Magneto-optical recording , 2001 .

[32]  R. Gambino,et al.  Magneto-optical recording materials , 1999 .

[33]  S. Tsunashima,et al.  Magneto‐optic Kerr effect of amorphous Gd–Fe–Co films , 1982 .

[34]  R. K. Wangsness Sublattice Effects in Magnetic Resonance , 1953 .