Continuation Multi-level Monte Carlo

In this chapter, we describe the Continuation Multi-Level Monte Carlo (C-MLMC) algorithm proposed in Collier et al. [1] and apply it to efficiently propagate operating and geometric uncertainties in internal and external aerodynamic simulations. The key idea of MLMC, presented in the previous chapter, is that one can draw MC samples simultaneously and independently on several approximations of the problem under investigation on a hierarchy of nested computational grids (levels). In the continuation algorithm (C-MLMC) the parameters that prescribe the number of levels and simulations per level are computed on the fly to further reduce the overall computational cost.

[1]  H. Sobieczky Parametric Airfoils and Wings , 1999 .

[2]  Mortaza Mani,et al.  Predictions of a Supersonic Turbulent Flow in a Square Duct , 2013 .

[3]  Hester Bijl,et al.  The Application of the Probabilistic Collocation Method to a Transonic Axial Flow Compressor , 2010 .

[4]  Pénélope Leyland,et al.  A Multi Level Monte Carlo Algorithm for the Treatment of Geometrical and Operational Uncertainties in Internal and External Aerodynamics , 2016 .

[5]  D. Schwamborn,et al.  The DLR-F5 Wing Test Case, Contribution to "EUROVAL - An European Initiative on Validation of CFD Codes" , 1993 .

[6]  L. Reid,et al.  Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor , 1978 .

[7]  T. Gatski,et al.  Chapter 3 – Compressible Turbulent Flow , 2013 .

[8]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[9]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[10]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[11]  J. Dunham CFD Validation for Propulsion System Components (la Validation CFD des organes des propulseurs) , 1998 .

[12]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[13]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.

[14]  Christophe Mabilat,et al.  Non-Deterministic CFD Simulation of a Transonic Compressor Rotor , 2009 .

[15]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[16]  Andrea Barth,et al.  Multilevel Monte Carlo method for parabolic stochastic partial differential equations , 2013 .

[17]  Jean-Paul Bonnet,et al.  Compressibility, Turbulence and High Speed Flow , 2009 .