A random map implementation of implicit filters

Implicit particle filters for data assimilation generate high-probability samples by representing each particle location as a separate function of a common reference variable. This representation requires that a certain underdetermined equation be solved for each particle and at each time an observation becomes available. We present a new implementation of implicit filters in which we find the solution of the equation via a random map. As examples, we assimilate data for a stochastically driven Lorenz system with sparse observations and for a stochastic Kuramoto-Sivashinsky equation with observations that are sparse in both space and time.

[1]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[2]  Milija Zupanski,et al.  Comparison of sequential data assimilation methods for the Kuramoto–Sivashinsky equation , 2009 .

[3]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[4]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[5]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[6]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[7]  I. Chueshov Gevrey regularity of random attractors for stochastic reaction-diffusion equations , 2000 .

[8]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[9]  Paul Krause,et al.  Dimensional reduction for a Bayesian filter. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[11]  Y. Sasaki SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .

[12]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[13]  Ionel Michael Navon,et al.  Comparison of Ensemble Data Assimilation methods for the shallow water equations model in the presence of nonlinear observation operator , 2010 .

[14]  D. Nychka Data Assimilation” , 2006 .

[15]  Peter Jan,et al.  Particle Filtering in Geophysical Systems , 2009 .

[16]  Robert N. Miller,et al.  Data assimilation into nonlinear stochastic models , 1999 .

[17]  Y. Sasaki,et al.  An ObJective Analysis Based on the Variational Method , 1958 .

[18]  P. Moral Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems , 1998 .

[19]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[20]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .

[21]  G. Sivashinsky Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1977 .

[22]  J. Hyman,et al.  THE KURAMOTO-SIV ASIDNSKY EQUATION: A BRIDGE BETWEEN POE'S AND DYNAMICAL SYSTEMS , 1986 .

[23]  Jonathan Weare,et al.  Particle filtering with path sampling and an application to a bimodal ocean current model , 2009, J. Comput. Phys..

[24]  R. Salmon,et al.  A variational method for inverting hydrographic data , 1986 .

[25]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[26]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[27]  Matthias Morzfeld,et al.  Implicit particle filters for data assimilation , 2010, 1005.4002.

[28]  M. Bocquet,et al.  Beyond Gaussian Statistical Modeling in Geophysical Data Assimilation , 2010 .

[29]  P. Kloeden,et al.  Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space–time noise , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  P. Bickel,et al.  Sharp failure rates for the bootstrap particle filter in high dimensions , 2008, 0805.3287.

[31]  J. Hyman,et al.  The Kuramoto-Sivashinsky equation: a bridge between PDE's and dynamical systems , 1986 .

[32]  E. Platen,et al.  Balanced Implicit Methods for Stiff Stochastic Systems , 1998 .

[33]  G. Mil’shtein A Method of Second-Order Accuracy Integration of Stochastic Differential Equations , 1979 .

[34]  G. Lord,et al.  A numerical scheme for stochastic PDEs with Gevrey regularity , 2004 .

[35]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[36]  A. Shirikyan Analyticity of solutions for randomly forced two-dimensional Navier-Stokes equations , 2002 .

[37]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[38]  A. Chorin,et al.  Implicit sampling for particle filters , 2009, Proceedings of the National Academy of Sciences.

[39]  Yoshiki Kuramoto,et al.  On the Formation of Dissipative Structures in Reaction-Diffusion Systems Reductive Perturbation Approach , 1975 .

[40]  J. Klauder,et al.  Numerical Integration of Multiplicative-Noise Stochastic Differential Equations , 1985 .

[41]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[42]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .