Response to Reviewer 1 Comments : How does the ice sheet surface mass balance relate to snowfall ? Insights from a ground-based precipitation radar in East Antarctica

1. The manuscript entitled ”How does the ice sheet surface balance relate to snowfall? Insights from a ground-based precipitation radar in East Antarctica” deals with the very important issue of measuring the Surface Mass Balance (SMB) over the Antarctic Ice Sheet. In particular, the goal of this work is to quantify the different terms of the SMB at Princess Elisabeth Station (Antarctica) and investigate the relation between snowfall and accumulation. The manuscript is for sure within the scope of the Journal and gives a systematic and rigorous analysis of the relation between snowfall and the accumulation at the considered site. Of course this work provides good results but many other sites must be analyzed to come to a more general conclusion.

[1]  Benjamin T. Johnson,et al.  Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR , 2017 .

[2]  Yuekui Yang,et al.  Blowing Snow Sublimation and Transport over Antarctica from 11 Years of CALIPSO Observations , 2017 .

[3]  C. Genthon,et al.  Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance , 2017, Proceedings of the National Academy of Sciences.

[4]  M. Maahn,et al.  Estimating radar reflectivity - Snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations , 2017 .

[5]  M. Frezzotti,et al.  Review of regional Antarctic snow accumulation over the past 1000 years , 2017 .

[6]  C. Genthon,et al.  Seasonal Variations in Drag Coefficient over a Sastrugi-Covered Snowfield in Coastal East Antarctica , 2017, Boundary-Layer Meteorology.

[7]  Annakaisa von Lerber,et al.  Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland , 2016 .

[8]  L. Polvani,et al.  Anthropogenic impact on Antarctic surface mass balance, currently masked by natural variability, to emerge by mid-century , 2016 .

[9]  E. Isaksson,et al.  A Comparison of Antarctic Ice Sheet Surface Mass Balance from Atmospheric Climate Models and In Situ Observations , 2016 .

[10]  R. DeConto,et al.  Contribution of Antarctica to past and future sea-level rise , 2016, Nature.

[11]  M. R. van den Broeke,et al.  Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model , 2016, Climate Dynamics.

[12]  M. R. van den Broeke,et al.  Clouds enhance Greenland ice sheet meltwater runoff , 2016, Nature Communications.

[13]  C. Genthon,et al.  Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica , 2015 .

[14]  E. Brun,et al.  Modeling the impact of snow drift on the decameter‐scale variability of snow properties on the Antarctic Plateau , 2014 .

[15]  Nicole Van Lipzig,et al.  The role of atmospheric rivers in anomalous snow accumulation in East Antarctica , 2014 .

[16]  Susanne Crewell,et al.  Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica , 2014 .

[17]  X. Fettweis,et al.  High-resolution modelling of the Antarctic surface mass balance, application for the 20th, 21st and 22nd centuries , 2013 .

[18]  M. R. van den Broeke,et al.  Meteorological regimes and accumulation patterns at Utsteinen, Dronning Maud Land, East Antarctica: Analysis of two contrasting years , 2013 .

[19]  Giovanni Macelloni,et al.  Event-driven deposition of snow on the Antarctic Plateau: analyzing field measurements with SNOWPACK , 2013 .

[20]  Alessandro Battaglia,et al.  Synergies and complementarities of CloudSat‐CALIPSO snow observations , 2013 .

[21]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[22]  Pavlos Kollias,et al.  Improved Micro Rain Radar snow measurements using Doppler spectra post-processing , 2012 .

[23]  K. Nishimura,et al.  Development of an automatic blowing-snow station , 2012 .

[24]  G. Krinner,et al.  An updated and quality controlled surface mass balance dataset for Antarctica , 2012 .

[25]  M. Broeke,et al.  Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica , 2012 .

[26]  T. Bracegirdle,et al.  The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses , 2012 .

[27]  S. Palm,et al.  Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation , 2012 .

[28]  Stephen P. Palm,et al.  Satellite remote sensing of blowing snow properties over Antarctica , 2011 .

[29]  Andrew J. Monaghan,et al.  An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses , 2011 .

[30]  C. Genthon,et al.  Present weather-sensor tests for measuring drifting snow , 2011, Annals of Glaciology.

[31]  M. Maahn,et al.  Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar) , 2011 .

[32]  T. Maksym,et al.  The importance of wind-blown snow redistribution to snow accumulation on Bellingshausen Sea ice , 2011, Annals of Glaciology.

[33]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[34]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[35]  Andrew J. Newman,et al.  Presenting the Snowflake Video Imager (SVI) , 2009 .

[36]  O. Eisen,et al.  Ground‐based measurements of spatial and temporal variability of snow accumulation in East Antarctica , 2008 .

[37]  Sergey Y. Matrosov,et al.  Snowfall Retrievals Using Millimeter-Wavelength Cloud Radars , 2008 .

[38]  P. Jones,et al.  Long-Term Variability of Daily North Atlantic–European Pressure Patterns since 1850 Classified by Simulated Annealing Clustering , 2007 .

[39]  M. Frezzotti,et al.  Spatial and temporal variability of snow accumulation in East Antarctica from traverse data , 2005, Journal of Glaciology.

[40]  Edward Hanna,et al.  Snowfall-Driven Growth in East Antarctic Ice Sheet Mitigates Recent Sea-Level Rise , 2005, Science.

[41]  C. Genthon,et al.  Interannual variability of the surface mass balance of West Antarctica from ITASE cores and ERA40 reanalyses, 1958–2000 , 2005 .

[42]  J. King,et al.  Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model , 2004 .

[43]  Rolf Philipona,et al.  Automatic cloud amount detection by surface longwave downward radiation measurements , 2004 .

[44]  J. Spinhirne,et al.  Observations of blowing snow at the South Pole , 2003 .

[45]  M. R. van den Broeke,et al.  Factors Controlling the Near-Surface Wind Field in Antarctica* , 2003 .

[46]  John J. Cassano,et al.  The Role of Katabatic Winds on the Antarctic Surface Wind Regime , 2003 .

[47]  Ian Simmonds,et al.  Synoptic Activity in the Seas around Antarctica , 2003 .

[48]  R. Bintanja,et al.  A simple parameterization for snowdrift sublimation over Antarctic snow surfaces , 2001 .

[49]  D. Vaughan,et al.  Reassessment of net surface mass balance in Antarctica , 1999 .

[50]  John Turner,et al.  Antarctic Meteorology and Climatology , 1998 .

[51]  A. Stohl,et al.  Interpolation Errors in Wind Fields as a Function of Spatial and Temporal Resolution and Their Impact on Different Types of Kinematic Trajectories , 1995 .

[52]  P. Anderson A Method for Rescaling Humidity Sensors at Temperatures Well below Freezing , 1994 .

[53]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[54]  S. Lhermitte,et al.  Response to Reviewer 3 Comments : Blowing snow detection from ground-based ceilometers : application to East Antarctica , 2017 .

[55]  S. Barnett,et al.  Philosophical Transactions of the Royal Society A : Mathematical , 2017 .

[56]  Frank Pattyn,et al.  Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf , 2017 .

[57]  NSouverijns,et al.  Drivers of future changes in East African precipitation , 2016 .

[58]  F. Pattyn,et al.  High variability of climate and surface mass balance induced by Antarctic ice rises , 2014, Journal of Glaciology.

[59]  Florence Naaim-Bouvet,et al.  Transport of Snow by the Wind: A Comparison Between Observations in Adélie Land, Antarctica, and Simulations Made with the Regional Climate Model MAR , 2012, Boundary-Layer Meteorology.

[60]  D. Macayeal,et al.  Drifting snow threshold measurements near McMurdo station, Antarctica: a sensor comparison study , 2012 .

[61]  N. Wood Estimation of snow microphysical properties with application to millimeter-wavelength radar retrievals for snowfall rate , 2011 .

[62]  M. Broeke,et al.  AWS measurements at the Belgian Antarctic station Princess Elisabeth, in Dronning Maud Land, for precipitation and surface mass balance studies , 2011 .

[63]  A. Bliss,et al.  Sublimation and surface energy budget of Taylor Glacier, Antarctica , 2011, Journal of Glaciology.

[64]  Judit Bartholy,et al.  Cost733cat - A database of weather and circulation type classifications , 2010 .

[65]  F. Doblas-Reyes,et al.  Links between circulation types and precipitation over Spain , 2010 .

[66]  E. Isaksson,et al.  A new surface accumulation map for western Dronning Maud Land, Antarctica, from interpolation of point measurements , 2007 .

[67]  M. R. van den Broeke,et al.  A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stationS , 2004, Journal of Glaciology.

[68]  G. Peters,et al.  Rain observations with a vertically looking Micro Rain Radar (MRR) , 2002 .

[69]  G. Mann,et al.  The seasonal cycle of sublimation at Halley, Antarctica , 2001, Journal of Glaciology.

[70]  M. Yau SIMULATION OF BLOWING SNOW IN THE CANADIAN ARCTIC USING A DOUBLE-MOMENT MODEL , 2001 .

[71]  D. Klugmann,et al.  A low cost 24 GHz FM-CW Doppler radar rain profiler , 1996 .