The impact of model and rainfall forcing errors on characterizing soil moisture uncertainty in land surface modeling

The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

[1]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[2]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[3]  Eric F. Wood,et al.  A land-surface hydrology parameterization with subgrid variability for general circulation models , 1992 .

[4]  R. Koster,et al.  Modeling the land surface boundary in climate models as a composite of independent vegetation stands , 1992 .

[5]  Marc Lynch-Stieglitz,et al.  The development and validation of a simple snow model for the GISS GCM , 1994 .

[6]  Michael D. Eilts,et al.  The Oklahoma Mesonet: A Technical Overview , 1995 .

[7]  Thomas M. Hamill,et al.  Verification of Eta–RSM Short-Range Ensemble Forecasts , 1997 .

[8]  Dong-Jun Seo,et al.  The WSR-88D rainfall algorithm , 1998 .

[9]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[10]  R. Koster,et al.  A catchment-based approach to modeling land surface processes in a general circulation model , 2000 .

[11]  T. Hamill Interpretation of Rank Histograms for Verifying Ensemble Forecasts , 2001 .

[12]  R. Koster,et al.  The Rhône-Aggregation Land Surface Scheme Intercomparison Project: An Overview , 2002 .

[13]  Jian Zhang,et al.  Weather Radar Coverage over the Contiguous United States , 2002 .

[14]  Jeffrey P. Walker,et al.  Extended versus Ensemble Kalman Filtering for Land Data Assimilation , 2002 .

[15]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  D. Mocko,et al.  Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS phase 2(e) - 1: Experiment description and summary intercomparisons , 2003 .

[17]  D. Mocko,et al.  Simulation of high latitude hydrological processes in the Torne-Kalix basin : PILPS phase 2(e) - 2: Comparison of model results with observations , 2003 .

[18]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[19]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[20]  Faisal Hossain,et al.  Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty , 2004 .

[21]  A. Raftery,et al.  Using Bayesian Model Averaging to Calibrate Forecast Ensembles , 2005 .

[22]  Michael G. Bosilovich,et al.  Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4 , 2005 .

[23]  Faisal Hossain,et al.  Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture , 2005 .

[24]  I. Zawadzki,et al.  Precipitation forecast skill of numerical weather prediction models and radar nowcasts , 2005 .

[25]  Randal D. Koster,et al.  Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model , 2005 .

[26]  Faisal Hossain,et al.  Using a multi‐dimensional satellite rainfall error model to characterize uncertainty in soil moisture fields simulated by an offline land surface model , 2005 .

[27]  M. Borga,et al.  Influence of errors in radar rainfall estimates on hydrological modeling prediction uncertainty , 2006 .

[28]  Wade T. Crow,et al.  Impact of Incorrect Model Error Assumptions on the Sequential Assimilation of Remotely Sensed Surface Soil Moisture , 2006 .

[29]  Faisal Hossain,et al.  A two-dimensional satellite rainfall error model , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[30]  S. Sorooshian,et al.  Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting , 2006 .

[31]  Faisal Hossain,et al.  Assessment of a multidimensional satellite rainfall error model for ensemble generation of satellite rainfall data , 2006, IEEE Geoscience and Remote Sensing Letters.

[32]  Wade T. Crow,et al.  An adaptive ensemble Kalman filter for soil moisture data assimilation , 2007 .

[33]  R. Koster,et al.  Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) and the Scanning Multichannel Microwave Radiometer (SMMR) , 2007 .

[34]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[35]  Wade T. Crow,et al.  Recent Advances in Land Data Assimilation at the NASA Global Modeling and Assimilation Office , 2009 .

[36]  Wade T. Crow,et al.  Performance Metrics for Soil Moisture Retrievals and Application Requirements , 2009 .

[37]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[38]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[39]  Clément Albergel,et al.  Evaluation of the observation operator Jacobian for leaf area index data assimilation with an extended Kalman filter , 2010 .

[40]  Emmanouil N. Anagnostou,et al.  The Effect of Satellite Rainfall Error Modeling on Soil Moisture Prediction Uncertainty , 2011 .

[41]  Wade T. Crow,et al.  The Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System , 2011 .

[42]  M. Rodell,et al.  Assimilation of terrestrial water storage from GRACE in a snow‐dominated basin , 2011 .

[43]  Stefan Siegert,et al.  Rank Histograms of Stratified Monte Carlo Ensembles , 2012 .

[44]  Praveen,et al.  A Catchment-Based Approach to Modeling Land Surface Processes. Part 2: Parameter Estimation and Model Demonstration , 2022 .