Mitochondrial membrane tension governs fission

Mitochondria rely on cellular machinery for their division, which is an essential component of metabolic response of the cell. Many division factors have been identified; however, a framework accounting for the energetic requirements of the mitochondrial fission process is lacking. We report that the presence of an active constriction does not ensure fission. Instead, by measuring constrictions down to ~100 nm with time-lapse super-resolution microscopy, we found that 34% of constrictions failed to divide and 9reversed9 to an unconstricted state. Higher local curvatures - reflecting an increased bending energy - made constriction sites more likely to divide, but often with a significant residual energy barrier to fission. Our data suggest that membrane tension, largely arising from pulling forces, could account for this missing energy. These results lead us to propose that mitochondrial fission is probabilistic, and can be modeled as arising from bending energy complemented by a fluctuating membrane tension.

[1]  Ira Milosevic,et al.  Mitochondrial fission requires DRP1 but not dynamins , 2019, Nature.

[2]  R. Loewith,et al.  TORC2 controls endocytosis through plasma membrane tension , 2019, The Journal of cell biology.

[3]  S. Manley,et al.  Mechanosensitive Fluorescent Probes to Image Membrane Tension in Mitochondria, Endoplasmic Reticulum, and Lysosomes. , 2019, Journal of the American Chemical Society.

[4]  M. Ryan,et al.  Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission , 2018, Nature Communications.

[5]  B. Kornmann,et al.  Mechanical forces on cellular organelles , 2018, Journal of Cell Science.

[6]  E. Derivery,et al.  A Fluorescent Membrane Tension Probe , 2018, Nature Chemistry.

[7]  D. Agard,et al.  Structural Basis of Mitochondrial Receptor Binding and Constriction by DRP1 , 2018, Nature.

[8]  H. Higgs,et al.  INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division , 2018, The Journal of cell biology.

[9]  Mathias J. Aebersold,et al.  Mechanical force induces mitochondrial fission , 2017, eLife.

[10]  F. Perez,et al.  Uncoupling of dynamin polymerization and GTPase activity revealed by the conformation-specific nanobody dynab , 2017, eLife.

[11]  R. Youle,et al.  Mitochondrial fission facilitates the selective mitophagy of protein aggregates , 2017, The Journal of cell biology.

[12]  E. Bossy‐Wetzel,et al.  Molecular mechanism of DRP1 assembly studied in vitro by cryo-electron microscopy , 2017, PloS one.

[13]  Hyo Min Cho,et al.  Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division , 2017, Nature Communications.

[14]  E. Derivery,et al.  Headgroup engineering in mechanosensitive membrane probes. , 2016, Chemical communications.

[15]  G. Voeltz,et al.  Multiple Dynamin family members collaborate to drive mitochondrial division , 2016, Nature.

[16]  J. Nunnari,et al.  ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells , 2016, Science.

[17]  Kari Naylor,et al.  Microtubules Are Essential for Mitochondrial Dynamics–Fission, Fusion, and Motility–in Dictyostelium discoideum , 2016, Front. Cell Dev. Biol..

[18]  H. Higgs,et al.  Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites , 2015, eLife.

[19]  Katarzyna Makowska,et al.  Construction of an instant structured illumination microscope , 2015, Methods.

[20]  J. Mears,et al.  Cardiolipin's propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission , 2015, Molecular biology of the cell.

[21]  J. Lippincott-Schwartz,et al.  A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division , 2015, eLife.

[22]  A. Babataheri,et al.  Elastocapillary Instability in Mitochondrial Fission. , 2015, Physical review letters.

[23]  Y. Li,et al.  Dynamic tubulation of mitochondria drives mitochondrial network formation , 2015, Cell Research.

[24]  M. Kozlov,et al.  Front-to-rear membrane tension gradient in rapidly moving cells. , 2015, Biophysical journal.

[25]  Lewis J. Kraft,et al.  Microtubule Motors Power Plasma Membrane Tubulation in Clathrin-Independent Endocytosis , 2015, Traffic.

[26]  L. Johannes,et al.  Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis , 2014, Nature.

[27]  H. Higgs,et al.  Novel roles for actin in mitochondrial fission , 2014, Journal of Cell Science.

[28]  W. Nickel,et al.  Dynamin-related Protein 1 (Drp1) Promotes Structural Intermediates of Membrane Division* , 2014, The Journal of Biological Chemistry.

[29]  Carlos Bustamante,et al.  Optimized two-color super resolution imaging of Drp1 during mitochondrial fission with a slow-switching Dronpa variant , 2014, Proceedings of the National Academy of Sciences.

[30]  G. Hu Whole Cell Cryo-Electron Tomography Suggests Mitochondria Divide by Budding , 2014, Microscopy and Microanalysis.

[31]  Andrew G. York,et al.  Instant super-resolution imaging in live cells and embryos via analog image processing , 2013, Nature Methods.

[32]  K. Mihara,et al.  Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c , 2013, Proceedings of the National Academy of Sciences.

[33]  J. Förtsch,et al.  The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture , 2013, Journal of Cell Science.

[34]  D. Schwefel,et al.  Structural insights into oligomerization and mitochondrial remodelling of dynamin 1‐like protein , 2013, The EMBO journal.

[35]  T. Betz,et al.  ESCRT-III Assembly and Cytokinetic Abscission Are Induced by Tension Release in the Intercellular Bridge , 2013, Science.

[36]  Adam Frost,et al.  Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission , 2013, Proceedings of the National Academy of Sciences.

[37]  Clara Franzini-Armstrong,et al.  Kissing and nanotunneling mediate intermitochondrial communication in the heart , 2013, Proceedings of the National Academy of Sciences.

[38]  H. Higgs,et al.  An Actin-Dependent Step in Mitochondrial Fission Mediated by the ER-Associated Formin INF2 , 2013, Science.

[39]  M. Sauer,et al.  rapidSTORM: accurate, fast open-source software for localization microscopy , 2012, Nature Methods.

[40]  G. Cappello,et al.  Membrane Shape at the Edge of the Dynamin Helix Sets Location and Duration of the Fission Reaction , 2012, Cell.

[41]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[42]  Chenglong Xia,et al.  Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes , 2012, Proceedings of the National Academy of Sciences.

[43]  Matthew West,et al.  ER Tubules Mark Sites of Mitochondrial Division , 2011, Science.

[44]  Pere Roca-Cusachs,et al.  Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading , 2011, Proceedings of the National Academy of Sciences.

[45]  J. Lippincott-Schwartz,et al.  Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation , 2011, Proceedings of the National Academy of Sciences.

[46]  Ann E. Frazier,et al.  MiD49 and MiD51, new components of the mitochondrial fission machinery , 2011, EMBO reports.

[47]  L. Scorrano,et al.  During autophagy mitochondria elongate, are spared from degradation and sustain cell viability , 2011, Nature Cell Biology.

[48]  R. Youle,et al.  Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells , 2010, The Journal of cell biology.

[49]  J. Mears,et al.  Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission , 2010, Nature Structural &Molecular Biology.

[50]  R. Schwarzenbacher,et al.  Membrane Remodeling Induced by the Dynamin-Related Protein Drp1 Stimulates Bax Oligomerization , 2010, Cell.

[51]  Badrinath Roysam,et al.  A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase , 2009, Proceedings of the National Academy of Sciences.

[52]  H. McBride,et al.  MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission , 2009, EMBO reports.

[53]  Jean-Claude Martinou,et al.  SLP‐2 is required for stress‐induced mitochondrial hyperfusion , 2009, The EMBO journal.

[54]  D. Attwell,et al.  Miro1 Is a Calcium Sensor for Glutamate Receptor-Dependent Localization of Mitochondria at Synapses , 2009, Neuron.

[55]  Xinnan Wang,et al.  The Mechanism of Ca2+-Dependent Regulation of Kinesin-Mediated Mitochondrial Motility , 2009, Cell.

[56]  S. Schmid,et al.  GTPase Cycle of Dynamin Is Coupled to Membrane Squeeze and Release, Leading to Spontaneous Fission , 2008, Cell.

[57]  M. Gustafsson,et al.  Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. , 2008, Biophysical journal.

[58]  A. M. van der Bliek,et al.  The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. , 2008, Molecular biology of the cell.

[59]  Julie A. Theriot,et al.  Mechanism of shape determination in motile cells , 2008, Nature.

[60]  Bin Wang,et al.  Membrane Deformability and Membrane Tension of Single Isolated Mitochondria , 2008 .

[61]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[62]  A. Mogilner,et al.  Model of polarization and bistability of cell fragments. , 2007, Biophysical journal.

[63]  I. Boldogh,et al.  Mitochondria on the move. , 2007, Trends in cell biology.

[64]  S. Strack,et al.  Reversible phosphorylation of Drp1 by cyclic AMP‐dependent protein kinase and calcineurin regulates mitochondrial fission and cell death , 2007, EMBO reports.

[65]  Toshihiko Oka,et al.  Mitotic Phosphorylation of Dynamin-related GTPase Drp1 Participates in Mitochondrial Fission* , 2007, Journal of Biological Chemistry.

[66]  P. Camilli,et al.  GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission , 2006, Nature.

[67]  J. McCaffery,et al.  Dnm1 forms spirals that are structurally tailored to fit mitochondria , 2005, The Journal of cell biology.

[68]  R. Cross,et al.  Mechanics of the kinesin step , 2005, Nature.

[69]  G. Hajnóczky,et al.  Control of mitochondrial motility and distribution by the calcium signal , 2004, The Journal of cell biology.

[70]  Yonathan Kozlovsky,et al.  Membrane fission: model for intermediate structures. , 2003, Biophysical journal.

[71]  T. Kirchhausen,et al.  Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. , 2003, Molecular biology of the cell.

[72]  A. M. van der Bliek,et al.  Composition and dynamics of human mitochondrial nucleoids. , 2003, Molecular biology of the cell.

[73]  I. Derényi,et al.  Formation and interaction of membrane tubes. , 2002, Physical review letters.

[74]  S. Zhang,et al.  Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides. , 2002, Physical review letters.

[75]  A. M. van der Bliek,et al.  Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. , 2001, Molecular biology of the cell.

[76]  J. Shaw,et al.  Dnm1p Gtpase-Mediated Mitochondrial Fission Is a Multi-Step Process Requiring the Novel Integral Membrane Component Fis1p , 2000, The Journal of cell biology.

[77]  M. Bauer,et al.  Tim23 Links the Inner and Outer Mitochondrial Membranes , 2000, Cell.

[78]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[79]  Michael P. Sheetz,et al.  Cell Spreading and Lamellipodial Extension Rate Is Regulated by Membrane Tension , 2000, The Journal of cell biology.

[80]  A. M. van der Bliek,et al.  C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. , 1999, Molecular cell.

[81]  J. Shaw,et al.  The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast , 1999, Nature Cell Biology.

[82]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[83]  A. Murray,et al.  Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. , 1997, Molecular biology of the cell.

[84]  G. Niggemann,et al.  The Bending Rigidity of Phosphatidylcholine Bilayers: Dependences on Experimental Method, Sample Cell Sealing and Temperature , 1995 .

[85]  N. Hirokawa,et al.  KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria , 1994, Cell.

[86]  E. Evans,et al.  Hidden dynamics in rapid changes of bilayer shape , 1994 .

[87]  M. De Brabander,et al.  Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. , 1976, Biochemical and biophysical research communications.

[88]  M. De Brabander,et al.  The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. , 1976, Cancer research.

[89]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[90]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[91]  A. Kaasik,et al.  Regulation of mitochondrial matrix volume. , 2007, American journal of physiology. Cell physiology.

[92]  A. Labrousse,et al.  elegans Dynamin-Related Protein DRP-1 Controls Severing of the Mitochondrial Outer , 1999 .

[93]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .