Using quantum routers to implement quantum message authentication and Bell-state manipulation

In this paper we investigate the capability of quantum routing (quantum state fusion) to implement two useful quantum communications protocols. The analyzed protocols include quantum authentication of quantum messages and non-destructive linear-optical Bell state manipulation. We also present the concept of quantum decoupler -- a device implementing an inverse operation to quantum routing. We demonstrate that both quantum router and decoupler can work as specialized disentangling gates.

[1]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[2]  P. J. Clarke,et al.  Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light , 2012, Nature communications.

[3]  G. Vallone,et al.  Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement , 2006, quant-ph/0609080.

[4]  Paul G. Kwiat,et al.  Hyperentangled Bell-state analysis , 2007 .

[5]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[6]  Franco Nori,et al.  Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences , 2013, 1310.7286.

[7]  T. Palomaki,et al.  Demonstration of a single-photon router in the microwave regime. , 2011, Physical review letters.

[8]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[10]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[11]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[12]  Karol Bartkiewicz,et al.  Entanglement estimation from Bell inequality violation , 2013, 1306.6504.

[13]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[14]  Paulo Mateus,et al.  Improving Classical Authentication over a Quantum Channel , 2012, Entropy.

[15]  P. J. Clarke,et al.  Realization of quantum digital signatures without the requirement of quantum memory. , 2013, Physical review letters.

[16]  Karol Bartkiewicz,et al.  Entanglement-assisted scheme for nondemolition detection of the presence of a single photon , 2012, 1212.5366.

[17]  Jan Soubusta,et al.  Entanglement-based linear-optical qubit amplifier , 2013, 1306.1342.

[18]  Marek Zukowski,et al.  Discriminating multipartite entangled states. , 2008, Physical review letters.

[19]  Discrimination of the Bell states of qudits by means of linear optics , 2001, quant-ph/0107119.

[20]  Xiongfeng Ma,et al.  Efficient heralding of photonic qubits with applications to device-independent quantum key distribution , 2011, 1105.2811.

[21]  J. Soubusta,et al.  Measuring nonclassical correlations of two-photon states , 2013, 1302.1221.

[22]  Franco Nori,et al.  Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities , 2009, 0909.2748.

[23]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[24]  Daowen Qiu,et al.  Security analysis and improvements of arbitrated quantum signature schemes , 2010 .

[25]  Cristian Bonato,et al.  CNOT and Bell-state analysis in the weak-coupling cavity QED regime. , 2010, Physical review letters.

[26]  M. Dušek,et al.  Quantum identification system , 1998, quant-ph/9809024.

[27]  Guihua Zeng Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ” , 2008 .

[28]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[29]  Adam Miranowicz,et al.  Direct method for measuring of purity, superfidelity, and subfidelity of photonic two-qubit mixed states , 2013 .

[30]  Andrzej Grudka,et al.  Nonmaximally entangled states can be better for multiple linear optical teleportation. , 2008, Physical review letters.

[31]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[32]  D. Bruß,et al.  Lectures on Quantum Information , 2007 .

[33]  Wei Chen,et al.  2 GHz clock quantum key distribution over 260 km of standard telecom fiber. , 2012, Optics letters.

[34]  Yaakov S. Weinstein,et al.  Quantum-error-correction implementation after multiple gates , 2013, 1305.2763.

[35]  Geoff J. Pryde,et al.  Heralded noiseless amplification of a photon polarization qubit , 2012, Nature Physics.

[36]  N J Cerf,et al.  Noiseless loss suppression in quantum optical communication. , 2012, Physical review letters.

[37]  T. Moroder,et al.  Heralded-qubit amplifiers for practical device-independent quantum key distribution , 2011, 1105.2573.

[38]  Harald Weinfurter,et al.  Experimental Bell-State Analysis , 1994 .

[39]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[40]  Joseph M. Renes,et al.  Spherical-code key-distribution protocols for qubits , 2004 .

[41]  Quan Zhang,et al.  Quantum signature scheme with single photons , 2006 .

[42]  Qin Li,et al.  Arbitrated quantum signature scheme using Bell states , 2009 .

[43]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[44]  N. Lutkenhaus,et al.  Comment on ``Arbitrated quantum-signature scheme'' , 2008, 0806.0854.

[45]  Yong Li,et al.  Quantum routing of single photons with a cyclic three-level system. , 2013, Physical review letters.

[46]  Yu-Ping Huang,et al.  Ultrafast switching of photonic entanglement , 2012, IEEE Photonics Conference 2012.

[47]  Wen Qiao-Yan,et al.  Cryptanalysis of the arbitrated quantum signature protocols , 2011 .

[48]  J. Bergou,et al.  Universal discriminator for completely unknown optical qubits , 2007, 0706.2429.

[49]  Enrico Santamato,et al.  Joining the quantum state of two photons into one , 2013, Nature Photonics.

[50]  N. Gisin,et al.  Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. , 2010, Physical review letters.

[51]  Jan Soubusta,et al.  Resource-efficient linear-optical quantum router , 2013, 1304.5042.

[52]  Jan Soubusta,et al.  Experimental eavesdropping based on optimal quantum cloning. , 2012, Physical review letters.

[53]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[54]  H. J. Kimble,et al.  Efficient routing of single photons with one atom and a microtoroidal cavity , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[55]  Mann,et al.  Measurement of the Bell operator and quantum teleportation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[56]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[57]  P. Hānggi,et al.  Quantum router based on ac control of qubit chains , 2009, 0905.4677.

[58]  Karel Lemr,et al.  Linear-optical programmable quantum router , 2012, 1208.3556.

[59]  Chunhui Wu,et al.  On the Existence of Quantum Signature for Quantum Messages , 2013, 1302.4528.

[60]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[61]  N. Lütkenhaus,et al.  Maximum efficiency of a linear-optical Bell-state analyzer , 2001 .