The Mars Astrobiology Explorer-Cacher (MAX-C): a potential Rover Mission for 2018

Executive Summary This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of 7km (semimajor axis landing ellipse), a mobility range of at least 10km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher (MAX-C) to reflect the dual purpose of this potential 2018 rover mission. A key conclusion is that the capabilities needed to carry out compelling, breakthrough science at the martian surface are the same as those needed to select samples for potential sample return to document their context. This leads to a common rover concept with the following attributes:

[1]  David Wacey,et al.  A fresh look at the fossil evidence for early Archaean cellular life , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[2]  Tori M Hoehler,et al.  An energy balance concept for habitability. , 2007, Astrobiology.

[3]  D. Lowe Restricted shallow-water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia , 1983 .

[4]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[5]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[6]  J. Burris,et al.  UV Raman Cross Sections in Nitrogen , 1992 .

[7]  A. Steele,et al.  The problem of deep carbon—An Archean paradox , 2005 .

[8]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[9]  E. Vicenzi,et al.  DETAILED ELEMENTAL, MINERALOGICAL, AND ISOTOPIC EXAMINATION OF JAROSITE IN MARTIAN METEORITE MIL 03346 , 2007 .

[10]  Donald R. Lowe,et al.  Photosynthetic microbial mats in the 3,416-Myr-old ocean , 2004, Nature.

[11]  J. Seewald,et al.  Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions , 2006 .

[12]  Mark C. Ivanov,et al.  SuperSmart Parachute Deployment Algorithm for Mars Pinpoint Landing , 2008 .

[13]  S. Asher,et al.  UV Resonance Raman Excitation Profiles of the Aromatic Amino Acids. , 1986 .

[14]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[15]  Ray D. Reid,et al.  Water and surface contamination monitoring using deep UV laser induced native fluorescence and Raman spectroscopy , 2006, SPIE Optics East.

[16]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[17]  R. Morris,et al.  Iron Mineralogy and Aqueous Alteration on Mars from the MER Moessbauer Spectrometers. Chapter 15 , 2007 .

[18]  R. Phillips,et al.  Mars' volatile and climate history , 2001, Nature.

[19]  Ashwin R. Vasavada,et al.  The first Mars surface-sample return mission: Revised science considerations in light of the 2004 MER results , 2005 .

[20]  Abigail C. Allwood,et al.  Stromatolite reef from the Early Archaean era of Australia , 2006, Nature.

[21]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[22]  C. Allen,et al.  The importance of (Noachian) impact craters as windows to the subsurface and as potential hosts of life , 2009 .

[23]  Joseph L. Kirschvink,et al.  Records of an ancient Martian magnetic field in ALH84001 , 2001 .

[24]  S. Squyres,et al.  Development of the Mars microbeam Raman spectrometer (MMRS) , 2003 .

[25]  Stanley M. Awramik,et al.  Filamentous fossil bacteria from the Archean of Western Australia , 1983 .

[26]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[27]  H. J. Hofmann,et al.  Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia , 1999 .

[28]  Michael D. Smith,et al.  MARS TRACE GAS MISSION : Scientific Goals and Measurement , 2009 .

[29]  J. G. Wang,et al.  Mineral Surface Control of Organic Carbon in Black Shale , 2002 .

[30]  J. Farmer,et al.  Improved Spectrometric Capabilities for In-Situ Microscopic Imagers , 2007 .

[31]  S. Asher,et al.  UV resonance raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes. , 2002, Analytical chemistry.

[32]  Jorge L. Vago,et al.  Science objectives of ESA's ExoMars mission , 2006 .

[33]  Jürgen Popp,et al.  UV Raman imaging--a promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites. , 2007, Analytical chemistry.

[34]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[35]  Alan D. Howard,et al.  An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits , 2005 .

[36]  A. Steele,et al.  Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard , 2007 .

[37]  A. Lane,et al.  Ultraviolet-stimulated fluorescence and phosphorescence of aromatic hydrocarbons in water ice. , 2011, Astrobiology.

[38]  A. Steele,et al.  Hydrothermal jarosite and hematite in a pyroxene-hosted melt inclusion in martian meteorite Miller Range (MIL) 03346: Implications for magmatic-hydrothermal fluids on Mars , 2009 .

[39]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[40]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[41]  William H. Farrand,et al.  Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate , 2008 .

[42]  J. Schopf,et al.  Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. , 1987, Science.

[43]  Nathalie A. Cabrol,et al.  Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .

[44]  R. Doyon,et al.  Near-Infrared Imaging Spectroscopy of M82 , 1994 .

[45]  William V. Boynton,et al.  Mars Odyssey Gamma Ray Spectrometer elemental abundances and apparent relative surface age: Implications for Martian crustal evolution , 2007 .

[46]  D. Stevenson Mars' core and magnetism , 2001, Nature.

[47]  Richard V. Morris,et al.  Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars , 2006 .

[48]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[49]  Isik Kanik,et al.  Controls on development and diversity of Early Archean stromatolites , 2009 .

[50]  C. Allen,et al.  Earth's earliest biosphere-a proposal to develop a collection of curated archean geologic reference materials. , 2003, Astrobiology.

[51]  S. Squyres,et al.  Science Definition of the Mars Science Laboratory Sample Cache , 2008 .

[52]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[53]  M. Storrie-Lombardi,et al.  Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging , 2001 .

[54]  S. Asher,et al.  Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation. , 1984, Science.

[55]  K. Nealson,et al.  Deep UV native fluorescence and resonance Raman spectroscopy for life-detection , 2008 .

[56]  The Value of Landed Meteorological Investigations on Mars: The Next Advance for Climate Science , 2009 .

[57]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[58]  J. van der Plicht,et al.  Mean residence time of soil organic matter associated with kaolinite and smectite , 2003 .

[59]  Steven W. Squyres,et al.  The Alpha-Particle-X-Ray-Spectrometer(APXS) for the Mars Science Laboratory (MSL) Rover Mission , 2009 .

[60]  R E Arvidson,et al.  Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover , 2004, Science.

[61]  A. Knoll,et al.  Water Activity and the Challenge for Life on Early Mars , 2008, Science.

[62]  T. Wdowiak,et al.  Laser–Raman imagery of Earth's earliest fossils , 2002, Nature.

[63]  C. Weitz,et al.  Opaline silica in young deposits on Mars , 2008 .

[64]  M. Walter,et al.  Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia , 1980, Nature.

[65]  D. Mitchell,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of , 1998 .

[66]  L. Mayer The inertness of being organic , 2004 .

[67]  Donna L. Shirley,et al.  The Mars Exploration Program , 1997 .

[68]  R. Bay,et al.  In situ microbial metabolism as a cause of gas anomalies in ice , 2008, Proceedings of the National Academy of Sciences.

[69]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[70]  S. Tripathi,et al.  Dust charging and electrical conductivity in the day and nighttime atmosphere of Mars , 2008 .

[71]  G. Landis,et al.  Detecting electrical activity from Martian dust storms , 1999 .

[72]  D. Ming,et al.  H2O at the Phoenix Landing Site , 2009, Science.

[73]  M. Walsh,et al.  Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. , 1992, Precambrian research.

[74]  S. Hayati,et al.  Strategic Technology Development for Future Mars Missions ( 2013-2022 ) , 2009 .

[75]  David I. Groves,et al.  Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia , 1981 .

[76]  D. Ming,et al.  Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .

[77]  M. Burchell,et al.  Capture effects in carbonaceous material: A Stardust analogue study , 2009 .

[78]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[79]  H. J. Hofmann,et al.  Archean Stromatolites as Microbial Archives , 2000 .

[80]  F. Prahl,et al.  Sorptive preservation of labile organic matter in marine sediments , 1994, Nature.

[81]  M. Walsh,et al.  Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa , 1985, Nature.

[82]  C. Allen,et al.  A Multispectral Micro-Imager for Lunar Field Geology , 2009 .

[83]  Donald R. Lowe,et al.  Stromatolites 3,400-Myr old from the Archean of Western Australia , 1980, Nature.

[84]  G. Cody,et al.  Carbonaceous material associated with apatite in the Akilia Qp rock , 2009 .

[85]  W. Farrell,et al.  Is there a Martian atmospheric electric circuit , 2001 .

[86]  Mark T. Lemmon,et al.  Phoenix Robotic Arm Camera , 2008 .

[87]  R. Gellert,et al.  Quantitative in situ determination of hydration of bright high‐sulfate Martian soils , 2008 .

[88]  John P. Grotzinger,et al.  Water on Mars and the Prospect of Martian Life , 2006 .

[89]  H. Frey Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system , 2008 .

[90]  D. Ming,et al.  Detection of Silica-Rich Deposits on Mars , 2008, Science.

[91]  M. Parrot,et al.  Electrostatic discharge in Martian dust storms , 1998 .

[92]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[93]  D. Lowe Abiological origin of described stromatolites older than 3.2 Ga. , 1994, Geology.

[94]  Trent M. Hare,et al.  Surface processes recorded by rocks and soils on Meridiani Planum, Mars: Microscopic Imager observations during Opportunity's first three extended missions , 2008 .

[95]  Joseph L. Kirschvink,et al.  Paleomagnetic Evidence of a Low-Temperature Origin of Carbonate in the Martian Meteorite ALH84001 , 1997, Science.

[96]  F. Nimmo,et al.  Influence of early plate tectonics on the thermal evolution and magnetic field of Mars , 2000 .

[97]  Y. Isozaki,et al.  Carbon Isotopic Signatures of Individual Archean Microfossils(?) from Western Australia , 2001 .

[98]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[99]  J. Kissel,et al.  Chemistry and Mineralogy of Comet Halley's Dust , 1997 .

[100]  D. Ming,et al.  Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site , 2009, Science.

[101]  S. Squyres,et al.  Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation , 2006 .

[102]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[103]  Andrew Steele,et al.  Abiotic Earth - Establishing a Baseline for Earliest Life, Data from the Archean of Western Australia , 2003 .

[104]  T. J. McCoy,et al.  Exploration of Victoria Crater by the Mars Rover Opportunity , 2009, Science.

[105]  Sanford A. Asher,et al.  Wavelength dependence of the preresonance Raman cross sections of CH3CN, SO42−, ClO4−, and NO3− , 1985 .

[106]  J. William Schopf,et al.  Fossil evidence of Archaean life , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[107]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[108]  Raymond E. Arvidson,et al.  Mars Exploration Rover mission , 2003 .

[109]  Jack D. Farmer,et al.  The Multispectral Microscopic Imager (MMI) with Improved Spectral Range and Resolution , 2009 .

[110]  J. Rouzaud,et al.  The 3.466 Ga "Kitty's Gap Chert," an early Archean microbial ecosystem , 2006 .

[111]  Michael D. Smith,et al.  Strong Release of Methane on Mars in Northern Summer 2003 , 2009, Science.

[112]  A. Knoll,et al.  An astrobiological perspective on Meridiani Planum , 2005 .

[113]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[114]  A. Basilevsky,et al.  Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera , 2004, Nature.

[115]  Paul Backes,et al.  Planetary Sample Caching System Design Options , 2009 .

[116]  F. Westall Morphological Biosignatures in Early Terrestrial and Extraterrestrial Materials , 2008 .

[117]  M. Walsh,et al.  Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa , 1986, Nature.

[118]  Kenneth L. Tanaka,et al.  Geologic map of the northern plains of Mars , 2005 .

[119]  S. Moorbath Palaeobiology: Dating earliest life , 2005, Nature.

[120]  Stergios I. Roumeliotis,et al.  Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and Landing , 2009, IEEE Transactions on Robotics.

[121]  P. Conrad Geochronology 
 and 
 Mars 
 Exploration : 
 Critical 
 Measurements 
 for 
 21 st 
 Century 
 Planetary 
 Science 
 
 , 2022 .

[122]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[123]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[124]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[125]  Jean-Pierre Bibring,et al.  Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars , 2008, Science.

[126]  Sumito Ohzawa Development of X-ray Guide Tube , 2008 .

[127]  A. Knoll,et al.  Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? , 1999, Annual review of earth and planetary sciences.

[128]  Harri Laakso,et al.  ARES, atmospheric relaxation and electric field sensor, the electric field experiment on NETLANDER , 2000 .

[129]  M. Manga,et al.  Giant impacts on early Mars and the cessation of the Martian dynamo , 2009 .

[130]  B. Kamber,et al.  Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean , 2003 .

[131]  E. A. Lima,et al.  Paleointensity of the ancient Martian magnetic field , 2008 .