Composite functional metasurfaces for multispectral achromatic optics

Nanostructured metasurfaces offer unique capabilities for subwavelength control of optical waves. Based on this potential, a large number of metasurfaces have been proposed recently as alternatives to standard optical elements. In most cases, however, these elements suffer from large chromatic aberrations, thus limiting their usefulness for multiwavelength or broadband applications. Here, in order to alleviate the chromatic aberrations of individual diffractive elements, we introduce dense vertical stacking of independent metasurfaces, where each layer is made from a different material, and is optimally designed for a different spectral band. Using this approach, we demonstrate a triply red, green and blue achromatic metalens in the visible range. We further demonstrate functional beam shaping by a self-aligned integrated element for stimulated emission depletion microscopy and a lens that provides anomalous dispersive focusing. These demonstrations lead the way to the realization of ultra-thin superachromatic optical elements showing multiple functionalities—all in a single nanostructured ultra-thin element.

[1]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[2]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[3]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[4]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[5]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[6]  David R. Smith,et al.  Infrared metamaterial phase holograms. , 2012, Nature materials.

[7]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[8]  Erez Hasman,et al.  Photonic spin-controlled multifunctional shared-aperture antenna array , 2016, Science.

[9]  Tal Ellenbogen,et al.  Nonlinear Beam Shaping with Plasmonic Metasurfaces , 2016 .

[10]  O. Avayu,et al.  Optical metasurfaces for polarization-controlled beam shaping. , 2014, Optics letters.

[11]  A. Lencina,et al.  Generation of optical vortices by using binary vortex producing lenses. , 2015, Applied optics.

[12]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[13]  Andrea Alù,et al.  Gradient Nonlinear Pancharatnam-Berry Metasurfaces. , 2015, Physical review letters.

[14]  A. Arie,et al.  Arbitrary holographic spectral shaping of plasmonic broadband excitations. , 2015, Optics letters.

[15]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[16]  Andrei Faraon,et al.  High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. , 2016, Optics express.

[17]  J. Zyss,et al.  Size and Shape Resonances in Second Harmonic Generation from Silver Nanocavities , 2013 .

[18]  M. Young Zone Plates and Their Aberrations , 1972 .

[19]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[20]  Y. Prior,et al.  Nonlinear metamaterials for holography , 2015, Nature Communications.

[21]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[22]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[23]  Tal Ellenbogen,et al.  Metasurfaces based dual wavelength diffractive lenses. , 2015, Optics express.

[24]  Xiaoliang Ma,et al.  Multispectral optical metasurfaces enabled by achromatic phase transition , 2015, Scientific Reports.

[25]  Andreas Tünnermann,et al.  Spatial and Spectral Light Shaping with Metamaterials , 2012, Advanced materials.

[26]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[27]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[28]  Christian Eggeling,et al.  STED microscopy reveals crystal colour centres with nanometric resolution. , 2009 .

[29]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[30]  M. Wegener,et al.  Second-Harmonic Generation from Magnetic Metamaterials , 2006, Science.

[31]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[32]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[33]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[34]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[35]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[36]  A. Polman,et al.  Nanophotonics: Shrinking light-based technology , 2015, Science.

[37]  Yongtian Wang,et al.  Spin and wavelength multiplexed nonlinear metasurface holography , 2016, Nature Communications.

[38]  Harald Giessen,et al.  Three-dimensional photonic metamaterials at optical frequencies. , 2008, Nature materials.

[39]  Y. Prior,et al.  Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces , 2015, Nature communications.

[40]  Federico Capasso,et al.  Nanostructured holograms for broadband manipulation of vector beams. , 2013, Nano letters.

[41]  Jacob Scheuer,et al.  Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays. , 2014, Nano letters.

[42]  Sheng Liu,et al.  Phased-array sources based on nonlinear metamaterial nanocavities , 2015, Nature Communications.

[43]  Seyedeh Mahsa Kamali,et al.  Multiwavelength metasurfaces through spatial multiplexing , 2016, Scientific Reports.

[44]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[45]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[46]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[47]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[48]  Tal Ellenbogen,et al.  Controlling light with metamaterial-based nonlinear photonic crystals , 2015, Nature Photonics.