Nanostructure arrays in free-space: optical properties and applications

Dielectric and metallic gratings have been studied for more than a century. Nevertheless, novel optical phenomena and fabrication techniques have emerged recently and have opened new perspectives for applications in the visible and infrared domains. Here, we review the design rules and the resonant mechanisms that can lead to very efficient light-matter interactions in sub-wavelength nanostructure arrays. We emphasize the role of symmetries and free-space coupling of resonant structures. We present the different scenarios for perfect optical absorption, transmission or reflection of plane waves in resonant nanostructures. We discuss the fabrication issues, experimental achievements and emerging applications of resonant nanostructure arrays.

[1]  C. Chang-Hasnain,et al.  A nanoelectromechanical tunable laser , 2008 .

[2]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[3]  M. C. Netti,et al.  Confined plasmons in metallic nanocavities. , 2001, Physical review letters.

[4]  A. de Lustrac,et al.  Resonant circuit model for efficient metamaterial absorber. , 2013, Optics express.

[5]  Tatiana V. Teperik,et al.  Void plasmons and total absorption of light in nanoporous metallic films , 2005 .

[6]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[7]  Stefan Enoch,et al.  Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory , 2005 .

[8]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[9]  Anne Sentenac,et al.  Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter. , 2007, Optics letters.

[10]  Jing Chen,et al.  Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures , 2008 .

[11]  S. Mayo,et al.  Optical absorption by surface plasmons in deep sub-wavelength channels , 2006 .

[12]  X. Cheng,et al.  SERS-active substrate based on gap surface plasmon polaritons. , 2009, Optics express.

[13]  T. Ebbesen,et al.  Efficiency and finite size effects in enhanced transmission through subwavelength apertures. , 2008, Optics express.

[14]  Luis Martín-Moreno,et al.  Transmission and focusing of light in one-dimensional periodically nanostructured metals , 2002 .

[15]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[16]  Harvesting light at the nanoscale by GaAs-gold nanowire arrays. , 2011, Optics express.

[17]  Daniel Maystre,et al.  Diffraction gratings: An amazing phenomenon , 2013 .

[18]  Tongtong Wang,et al.  Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption , 2013 .

[19]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[20]  R. Magnusson,et al.  Resonant leaky-mode spectral-band engineering and device applications. , 2004, Optics express.

[21]  Philippe Lalanne,et al.  Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires. , 2013, Optics express.

[22]  Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells , 2012 .

[23]  Kazuhiro Hane,et al.  Control of guided resonance in a photonic crystal slab using microelectromechanical actuators , 2007 .

[24]  Sergei V. Shabanov,et al.  Second harmonic generation from arrays of subwavelength cylinders , 2007 .

[25]  Carsten Rockstuhl,et al.  Deep-subwavelength plasmonic nanoresonators exploiting extreme coupling. , 2013, Nano letters.

[26]  J. Greffet,et al.  Resonant transmission through a metallic film due to coupled modes. , 2005, Optics express.

[27]  K. Malloy,et al.  Metallic inductive and capacitive grids: theory and experiment. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Thomas W. Ebbesen,et al.  Crucial role of metal surface in enhanced transmission through subwavelength apertures , 2000 .

[29]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[30]  Y. N. Chen,et al.  Antenna-coupled microcavities for enhanced infrared photo-detection , 2014 .

[31]  J. Greffet,et al.  Degree of polarization of thermal light emitted by gratings supporting surface waves. , 2008, Optics express.

[32]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[33]  Paolo Mazzoldi,et al.  Light extraction with dielectric nanoantenna arrays. , 2009, ACS nano.

[34]  Yohan Desieres,et al.  Plasmon-based photosensors comprising a very thin semiconducting region , 2009 .

[35]  W. A. Murray,et al.  Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. , 2004, Physical review letters.

[36]  David R. Smith,et al.  Impact of nonlocal response on metallodielectric multilayers and optical patch antennas , 2012, 1211.5504.

[37]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[38]  Jean-Luc Pelouard,et al.  Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering. , 2011, Optics letters.

[39]  Jean-Luc Pelouard,et al.  Analytical description of subwavelength plasmonic MIM resonators and of their combination. , 2013, Optics express.

[40]  Thomas W. Ebbesen,et al.  Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture , 1999 .

[41]  Willie J Padilla,et al.  Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging , 2008, 0807.3390.

[42]  Mark L Brongersma,et al.  Spectral properties of plasmonic resonator antennas. , 2008, Optics express.

[43]  Ole Albrektsen,et al.  Efficient absorption of visible radiation by gap plasmon resonators. , 2012, Optics express.

[44]  Wei-Ping Huang Coupled-mode theory for optical waveguides: an overview , 1994 .

[45]  Philippe Lalanne,et al.  Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells , 2012 .

[46]  P. Lalanne,et al.  Surface modes on nanostructured metallic surfaces , 2009 .

[47]  J. Sáenz,et al.  Full transmission through perfect-conductor subwavelength hole arrays. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Ruey-Lin Chern,et al.  Nearly perfect absorption in intrinsically low-loss grating structures. , 2011, Optics express.

[49]  Henri Benisty,et al.  Photonic crystal light-emitting sources , 2012, Reports on progress in physics. Physical Society.

[50]  A. Borisov,et al.  Bound States in the continuum in photonics. , 2008, Physical review letters.

[51]  Roger Petit,et al.  Electromagnetic theory of gratings , 1980 .

[52]  P. Quémerais,et al.  Electromagnetic resonances of sub-wavelength rectangular metallic gratings , 2003 .

[53]  Xavier Letartre,et al.  Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures , 2003 .

[54]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[55]  C. Chang-Hasnain,et al.  Theoretical analysis of subwavelength high contrast grating reflectors. , 2010, Optics express.

[56]  John William Strutt Scientific Papers: Note on the remarkable case of Diffraction Spectra described by Prof. Wood , 2009 .

[57]  M. Brongersma,et al.  Metal-dielectric-metal surface plasmon-polariton resonators , 2012 .

[58]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[59]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[60]  J. P. Woerdman,et al.  Fano-type interpretation of red shifts and red tails in hole array transmission spectra , 2003, physics/0401054.

[61]  Ye Zhou,et al.  Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating. , 2008, Optics express.

[62]  Harry A Atwater,et al.  Plasmonic color filters for CMOS image sensor applications. , 2012, Nano letters.

[63]  Christopher Robert Lawrence,et al.  Selective transmission through very deep zero-order metallic gratings at microwave frequencies , 2000 .

[64]  Masanori Hangyo,et al.  Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons , 2005 .

[65]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[66]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[67]  J. Pendry,et al.  Evanescently coupled resonance in surface plasmon enhanced transmission , 2001 .

[68]  R. Ulrich,et al.  Submillimeter waveguiding on periodic metal structure , 1973 .

[69]  S. Chuwongin,et al.  Design of Photonic Crystal Membrane-Reflector-Based VCSELs , 2012, IEEE Photonics Journal.

[70]  Sorin Tibuleac,et al.  Reflection and transmission guided-mode resonance filters , 1997 .

[71]  H. J. Lezec,et al.  The optical response of nanostructured surfaces and the composite diffracted evanescent wave model , 2006 .

[72]  Chang-Hyun Park,et al.  Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure. , 2012, Optics express.

[73]  W. Barnes Comparing experiment and theory in plasmonics , 2009 .

[74]  V. Reboud,et al.  Metallic colour filtering arrays manufactured by NanoImprint lithography , 2013 .

[75]  Arnold F. McKinley,et al.  Plasmonics and nanophotonics for photovoltaics , 2011 .

[76]  J. Popp,et al.  SERS-based detection of biomolecules , 2014 .

[77]  P. Lalanne,et al.  A microscopic view of the electromagnetic properties of sub-λ metallic surfaces , 2009 .

[78]  S Tibuleac,et al.  High-efficiency guided-mode resonance filter. , 1998, Optics letters.

[79]  N. V. van Hulst,et al.  Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. , 2004, Physical review letters.

[80]  Jean-Luc Pelouard,et al.  Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. , 2012, Optics letters.

[81]  Thomas Søndergaard,et al.  Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves , 2012, Nature Communications.

[82]  O. Martin,et al.  Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. , 2008, Optics express.

[83]  H. Atwater,et al.  Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors , 2009 .

[84]  A. Polman,et al.  Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells , 2012 .

[85]  Nicolas Bonod,et al.  Total absorption of light by lamellar metallic gratings. , 2008, Optics express.

[86]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[87]  Armando Ricciardi,et al.  Optical guided mode resonance filter on a flexible substrate. , 2013, Optics express.

[88]  Ricardo A Depine,et al.  Transmission resonances of metallic compound gratings with subwavelength slits. , 2005, Physical review letters.

[89]  Shanhui Fan,et al.  Air-bridged photonic crystal slabs at visible and near-infrared wavelengths , 2006 .

[90]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[91]  Christophe Dupuis,et al.  Total funneling of light in high aspect ratio plasmonic nanoresonators , 2011 .

[92]  Shanhui Fan,et al.  Progress in 2D photonic crystal Fano resonance photonics , 2014 .

[93]  R. W. Wood,et al.  Anomalous Diffraction Gratings , 1935 .

[94]  Jean-Luc Pelouard,et al.  Angle-resolved transmission measurements through anisotropic two-dimensional plasmonic crystals. , 2008, Optics letters.

[95]  A. Borisov,et al.  Optical resonances in the scattering of light from a nanostructured metal surface: A three-dimensional numerical study , 2009 .

[96]  F Lemarchand,et al.  Increasing the angular tolerance of resonant grating filters with doubly periodic structures. , 1998, Optics letters.

[97]  D B Tanner,et al.  Optical transmission through double-layer metallic subwavelength slit arrays. , 2006, Optics letters.

[98]  Jean-Luc Pelouard,et al.  Horizontal and vertical surface resonances in transmission metallic gratings , 2002 .

[99]  P. Quémerais,et al.  Optical transmission through subwavelength metallic gratings , 2002 .

[100]  C. Chang-Hasnain,et al.  Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10 μm , 2005 .

[101]  Q-Han Park,et al.  Coupling of surface plasmon polaritons and light in metallic nanoslits. , 2005, Physical review letters.

[102]  W. A. Murray,et al.  Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure , 2006 .

[103]  Simion Astilean,et al.  Light transmission through metallic channels much smaller than the wavelength , 2000 .

[104]  R. Wood XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum , 1902 .

[105]  Jean-Jacques Greffet,et al.  Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law , 1998 .

[106]  S. Enoch,et al.  Resonant optical transmission through thin metallic films with and without holes. , 2003, Optics express.

[107]  Thomas W. Ebbesen,et al.  Surface-plasmon-enhanced transmission through hole arrays in Cr films , 1999 .

[108]  X. Letartre,et al.  Dual-wavelength micro-resonator combining photonic crystal membrane and Fabry-Perot cavity. , 2011, Optics express.

[109]  A. Haes,et al.  Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics , 2004, Expert review of molecular diagnostics.

[110]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[111]  Anne Sentenac,et al.  Angular tolerant resonant grating filters under oblique incidence. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[112]  C. E. Moran,et al.  Metallodielectric gratings with subwavelength slots: Optical properties , 2003 .

[113]  S. Hayashi,et al.  Plasmonics: visit the past to know the future , 2012 .

[114]  Liyuan Liu,et al.  Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. , 2009, Optics express.

[115]  M. Eich,et al.  Perfect narrow-band absorber based on a monolayer of metallodielectric microspheres , 2013 .

[116]  R. Magnusson,et al.  Physical basis for wideband resonant reflectors. , 2008, Optics express.

[117]  Jeremy J. Baumberg,et al.  Understanding Plasmons in Nanoscale Voids , 2007 .

[118]  X. Letartre,et al.  Photonic crystals : basic concepts and devices , 2007 .

[119]  E. Popov,et al.  Comparative study of total absorption of light by two-dimensional channel and hole array gratings. , 2012, Optics express.

[120]  Daniel Maystre,et al.  Theoretical Study of the Anomalies of Coated Dielectric Gratings , 1986 .

[121]  E. Popov,et al.  Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings. , 2007, Optics express.

[122]  L. Rayleigh III. Note on the remarkable case of diffraction spectra described by Prof. Wood , 1907 .

[123]  V. Shalaev Optical negative-index metamaterials , 2007 .

[124]  I. Sagnes,et al.  Optical critical coupling into highly confining metal-insulator-metal resonators , 2013 .

[125]  S. S. Wang,et al.  Theory and applications of guided-mode resonance filters. , 1993, Applied optics.

[126]  Jean-Luc Pelouard,et al.  Efficient light absorption in metal–semiconductor–metal nanostructures , 2004 .

[127]  E. Fort,et al.  Surface enhanced fluorescence , 2008 .

[128]  Tina Clausnitzer,et al.  Narrowband, polarization-independent free-space wave notch filter. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[129]  G Dolling,et al.  Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. , 2005, Optics letters.

[130]  Teri W Odom,et al.  Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. , 2006, Nano letters.

[131]  Vadim Karagodsky,et al.  Physics of near-wavelength high contrast gratings. , 2012, Optics express.

[132]  I. Sagnes,et al.  Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter. , 2006, Optics Express.

[133]  Anne Sentenac,et al.  Unpolarized narrow-band filtering with resonant gratings , 2005 .

[134]  William L. Schaich,et al.  Narrow-band, tunable infrared emission from arrays of microstrip patches , 2008 .

[135]  Eric W. McFarland,et al.  A photovoltaic device structure based on internal electron emission , 2003, Nature.

[136]  R. Magnusson,et al.  Doubly resonant single-layer bandpass optical filters. , 2004, Optics letters.

[137]  X. Letartre,et al.  Modal approach for tailoring the absorption in a photonic crystal membrane , 2012, 1306.3832.

[138]  Christian Seassal,et al.  Analysis of hybrid photonic crystal vertical cavity surface emitting lasers. , 2003, Optics express.

[139]  P. Quémerais,et al.  Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. , 2007, Physical review letters.

[140]  C. Sirtori,et al.  Coupling of a surface plasmon with localized subwavelength microcavity modes , 2011, 1212.5014.

[141]  Vasyl G. Kravets,et al.  Plasmonic blackbody : Almost complete absorption of light in nanostructured metallic coatings , 2008 .

[142]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[143]  Zhanghua Han,et al.  Radiation guiding with surface plasmon polaritons , 2013, Reports on progress in physics. Physical Society.

[144]  Philippe Lalanne,et al.  On the effective medium theory of subwavelength periodic structures , 1996 .

[145]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[146]  Mikael Käll,et al.  Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. , 2009, Nano letters.

[147]  N Rochat,et al.  High rejection bandpass optical filters based on sub-wavelength metal patch arrays. , 2011, Optics express.

[148]  Thomas W. Ebbesen,et al.  Strongly enhanced optical transmission through subwavelength holes in metal films , 2000 .

[149]  Stephen Y. Chou,et al.  Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings , 1996 .

[150]  Applications of the wave packet method to resonant transmission and reflection gratings , 2003, physics/0312103.

[151]  Robert Magnusson,et al.  Guided-mode resonances in planar dielectric-layer diffraction gratings , 1990 .

[152]  P. Chavel,et al.  Optical properties of deep lamellar Gratings: A coupled Bloch-mode insight , 2006, Journal of Lightwave Technology.

[153]  Franco Nori,et al.  Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media , 2007, 0708.2653.

[154]  Steven G. Johnson,et al.  Observation of trapped light within the radiation continuum , 2013, Nature.

[155]  J. Sáenz,et al.  Electromagnetic surface modes in structured perfect-conductor surfaces. , 2005, Physical review letters.

[156]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[157]  Pierre Chavel,et al.  Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures , 2003 .

[158]  Jean-Luc Pelouard,et al.  Light funneling mechanism explained by magnetoelectric interference. , 2010, Physical review letters.

[159]  R. Depine,et al.  Narrow gaps for transmission through metallic structured gratings with subwavelength slits. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[160]  N. Engheta,et al.  Thin absorbing screens using metamaterial surfaces , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[161]  Jean-Luc Pelouard,et al.  Optical extinction in a single layer of nanorods. , 2012, Physical review letters.

[162]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[163]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[164]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[165]  J. Pendry,et al.  Surfaces with holes in them: new plasmonic metamaterials , 2005 .

[166]  Zhenwu Lu,et al.  Metamaterial‐Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting , 2013 .

[167]  Olivier J F Martin,et al.  Optical interactions in a plasmonic particle coupled to a metallic film. , 2006, Optics express.

[168]  Wei Zhou,et al.  Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. , 2011, Nature nanotechnology.

[169]  L. Genzel,et al.  Transmission and reflection of metallic mesh in the far infrared , 1964 .

[170]  H. Lezec,et al.  Control of optical transmission through metals perforated with subwavelength hole arrays. , 1999, Optics letters.

[171]  Vadim Karagodsky,et al.  Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. , 2010, Optics express.

[172]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[173]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[174]  Jérôme Primot,et al.  Perfect extinction in subwavelength dual metallic transmitting gratings. , 2011, Optics letters.

[175]  J. R. Sambles,et al.  Stationary Surface Plasmons on a Zero-Order Metal Grating , 1998 .

[176]  Christopher Robert Lawrence,et al.  Remarkable transmission of microwaves through a wall of long metallic bricks , 2001 .

[177]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[178]  Y. Suzuki,et al.  Broad-band mirror (1.12-1.62 /spl mu/m) using a subwavelength grating , 2004, IEEE Photonics Technology Letters.

[179]  Wei Xu,et al.  Surface plasmon polaritons: physics and applications , 2012 .

[180]  Anne Sentenac,et al.  Phenomenological theory of filtering by resonant dielectric gratings. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[181]  E. Popov,et al.  Strong three-dimensional field localization and enhancement on deep sinusoidal gratings with two-dimensional periodicity. , 2013, Optics letters.

[182]  P. Viktorovitch,et al.  Compact 1.55 /spl mu/m room-temperature optically pumped VCSEL using photonic crystal mirror , 2007 .

[183]  C. Sauvan,et al.  Generation and control of hot spots on commensurate metallic gratings. , 2008, Optics express.

[184]  Shanhui Fan,et al.  Angular and polarization properties of a photonic crystal slab mirror. , 2004, Optics express.

[185]  U. Fano,et al.  The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves) , 1941 .

[186]  M. Moewe,et al.  High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[187]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[188]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[189]  Weijian Yang,et al.  High-contrast gratings for integrated optoelectronics , 2012 .

[190]  Nicolas Bonod,et al.  Total light absorption in a wide range of incidence by nanostructured metals without plasmons. , 2008, Optics letters.

[191]  S. Bozhevolnyi,et al.  Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves , 2013 .

[192]  A. A. Oliner,et al.  A New Theory of Wood’s Anomalies on Optical Gratings , 1965 .

[193]  E. Polnau,et al.  Polarimetry of transmission gratings. , 1995, Applied optics.

[194]  F. Pardo,et al.  Strong discontinuities in the complex photonic band structure of transmission metallic gratings , 2001 .

[195]  V. Popov,et al.  Total light absorption in plasmonic nanostructures , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[196]  H. Giessen,et al.  Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. , 2003, Physical review letters.

[197]  Thomas W. Ebbesen,et al.  Surface plasmons enhance optical transmission through subwavelength holes , 1998 .

[198]  Olivier J F Martin,et al.  Tunable composite nanoparticle for plasmonics. , 2006, Optics letters.

[199]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[200]  Nicolas Guillot,et al.  Lithographied nanostructures as nanosensors , 2012 .

[201]  C. Chang-Hasnain,et al.  Ultrabroadband mirror using low-index cladded subwavelength grating , 2004, IEEE Photonics Technology Letters.

[202]  S. S. Wang,et al.  Design of waveguide-grating filters with symmetrical line shapes and low sidebands. , 1994, Optics letters.

[203]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[204]  V. Giliberti,et al.  Field distribution and quality factor of surface plasmon resonances of metal meshes for mid-infrared sensing , 2013, Plasmonics.

[205]  Junpeng Guo,et al.  Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures , 2013 .

[206]  Role of shape in middle-infrared transmission enhancement through periodically perforated metal films. , 2004, Optics letters.

[207]  Mario Agio,et al.  Optical antennas as nanoscale resonators. , 2011, Nanoscale.

[208]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[209]  R. Magnusson,et al.  New principle for optical filters , 1992 .

[210]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[211]  E. Popov,et al.  Enhanced transmission due to nonplasmon resonances in one- and two-dimensional gratings. , 2004, Applied optics.

[212]  Makoto Okada,et al.  Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities , 2008 .

[213]  Gennady Shvets,et al.  Large-area, wide-angle, spectrally selective plasmonic absorber , 2011, 1104.3129.

[214]  Daniel Maystre,et al.  Brewster incidence for metallic gratings , 1976 .

[215]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[216]  R. Ulrich Far-infrared properties of metallic mesh and its complementary structure , 1967 .

[217]  Shanhui Fan,et al.  One-mode model for patterned metal layers inside integrated color pixels. , 2004, Optics letters.

[218]  D. Maystre,et al.  Quantitative theoretical study of the plasmon anomalies of diffraction gratings , 1977 .

[219]  J. Hao,et al.  Nearly total absorption of light and heat generation by plasmonic metamaterials , 2011 .

[220]  Peter Nordlander,et al.  Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device , 2013, Nature Communications.

[221]  Antonio Luque,et al.  Understanding intermediate-band solar cells , 2012, Nature Photonics.

[222]  Karl Friedrich Renk,et al.  Interference Filters and Fabry-Perot Interferometers for the Far Infrared , 1962 .

[223]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[224]  A. Wirgin,et al.  Can surface-enhanced raman scattering be caused by waveguide resonances? , 1984 .

[225]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[226]  Suresh Venkatesh,et al.  Experimental realization of a metamaterial detector focal plane array. , 2012, Physical review letters.

[227]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[228]  Romain Quidant,et al.  Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. , 2005, Optics letters.

[229]  Jean-Luc Pelouard,et al.  Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications , 2008 .

[230]  C. Simovski,et al.  Huge local field enhancement in perfect plasmonic absorbers. , 2012, Optics express.

[231]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[232]  Chen Cheng,et al.  Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits , 2007 .

[233]  A. Kaminski,et al.  Absorption enhancement using photonic crystals for silicon thin film solar cells. , 2009, Optics express.

[234]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[235]  Weidong Zhou,et al.  Fano filters based on transferred silicon nanomembranes on plastic substrates , 2008 .

[236]  C. Chang-Hasnain,et al.  A surface-emitting laser incorporating a high-index-contrast subwavelength grating , 2007 .

[237]  Sanjay Krishna,et al.  Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors. , 2009, Optics express.

[238]  Makoto Okada,et al.  Thermal emission of two-color polarized infrared waves from integrated plasmon cavities , 2008 .

[239]  Zhijun Sun,et al.  Role of surface plasmons in the optical interaction in metallic gratings with narrow slits , 2003 .

[240]  M. Kanskar,et al.  OBSERVATION OF LEAKY SLAB MODES IN AN AIR-BRIDGED SEMICONDUCTOR WAVEGUIDE WITH A TWO-DIMENSIONAL PHOTONIC LATTICE , 1997 .

[241]  Lord Rayleigh F.R.S. X. On the electromagnetic theory of light , 1881 .

[242]  Lochbihler Surface polaritons on gold-wire gratings. , 1994, Physical review. B, Condensed matter.

[243]  A. Yariv Universal relations for coupling of optical power between microresonators and dielectric waveguides , 2000 .

[244]  L. L. Doskolovich,et al.  Numerical Methods for Calculating Poles of the Scattering Matrix With Applications in Grating Theory , 2012, Journal of Lightwave Technology.

[245]  Steven G. Johnson,et al.  Bloch surface eigenstates within the radiation continuum , 2013, Light: Science & Applications.

[246]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[247]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[248]  X. Letartre,et al.  Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors. , 2007, Optics express.

[249]  M C Hutley,et al.  Total absorption of unpolarized light by crossed gratings. , 2008, Optics express.

[250]  Erez Hasman,et al.  Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves , 2007 .

[251]  J. R. Pierce,et al.  Coupling of Modes of Propagation , 1954 .

[252]  P. Lalanne,et al.  Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission , 2012, Nature.

[253]  C. Sauvan,et al.  Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating. , 2010, Optics express.

[254]  S. Bozhevolnyi,et al.  Plasmonic black metals via radiation absorption by two-dimensional arrays of ultra-sharp convex grooves , 2014, Scientific Reports.

[255]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[256]  S. Maier Localized Surface Plasmons , 2007 .

[257]  Yi Rao,et al.  1550 nm high contrast grating VCSEL. , 2010, Optics express.

[258]  Hermann A. Haus,et al.  Coupled-mode theory of optical waveguides , 1987 .

[259]  Guohui Xiao,et al.  Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit , 2013, Nature Communications.

[260]  George C Schatz,et al.  Surface plasmon standing waves in large-area subwavelength hole arrays. , 2005, Nano letters.

[261]  Jean-Luc Pelouard,et al.  Waveguiding in nanoscale metallic apertures. , 2007, Optics express.

[262]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[263]  Aaswath Raman,et al.  Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. , 2013, Nano letters.

[264]  J. Sambles,et al.  Experimental Verification of Designer Surface Plasmons , 2005, Science.

[265]  Wei Ding,et al.  Enhancement of immunoassay's fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array. , 2012, Analytical chemistry.

[266]  G. Shvets,et al.  Wide-angle infrared absorber based on a negative-index plasmonic metamaterial , 2008, 0807.1312.

[267]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[268]  Marine Laroche,et al.  Extraordinary optical reflection from sub-wavelength cylinder arrays. , 2006, Optics express.

[269]  Junxi Zhang,et al.  Nanostructures for surface plasmons , 2012 .

[270]  Franciscus B. Segerink,et al.  Influence of hole size on the extraordinary transmission through subwavelength hole arrays , 2004 .

[271]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[272]  Jean-Luc Pelouard,et al.  Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane. , 2010, Physical review letters.

[273]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[274]  Peter Nordlander,et al.  Embedding plasmonic nanostructure diodes enhances hot electron emission. , 2013, Nano letters.

[275]  A. Haghiri-Gosnet,et al.  λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint and Degassing Assisted Patterning , 2011 .

[276]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[277]  Yi Cui,et al.  Broadband light management using low-Q whispering gallery modes in spherical nanoshells , 2012, Nature Communications.

[278]  G. Faini,et al.  Soft UV-NIL at 20nm scale using flexible bi-layer stamp casted on HSQ master mold , 2010 .

[279]  Ki-Dong Lee,et al.  Color filter based on a subwavelength patterned metal grating , 2007 .

[280]  E. A. Lewis,et al.  Electromagnetic Reflection and Transmission by Gratings of Resistive Wires , 1952 .

[281]  Jeremy J. Baumberg,et al.  Omnidirectional absorption in nanostructured metal surfaces , 2008 .

[282]  P. Vincent,et al.  Corrugated dielectric waveguides: A numerical study of the second-order stop bands , 1979 .

[283]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[284]  Eleftherios N. Economou,et al.  The science of negative index materials , 2008 .

[285]  A. A. Friesem,et al.  Narrow spectral bandwidths with grating waveguide structures , 1996 .

[286]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[287]  P. Lalanne,et al.  Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor , 2012 .

[288]  Lord Rayleigh,et al.  On the Dynamical Theory of Gratings , 1907 .

[289]  K. Catchpole,et al.  Nanophotonic light trapping in solar cells , 2012 .

[290]  M. Wegener,et al.  Periodic nanostructures for photonics , 2007 .

[291]  H Lochbihler,et al.  Highly conducting wire gratings in the resonance region. , 1993, Applied optics.

[292]  N. Mattiucci,et al.  Impedance matched thin metamaterials make metals absorbing , 2013, Scientific Reports.

[293]  Juan José Sáenz,et al.  Tuning the optical response of nanocylinder arrays: An analytical study , 2006 .

[294]  P. Lalanne,et al.  Surface plasmons of metallic surfaces perforated by nanohole arrays , 2005 .

[295]  A. Borisov,et al.  Tunneling mechanism of light transmission through metallic films. , 2005, Physical review letters.

[296]  Daniel Maystre,et al.  The total absorption of light by a diffraction grating , 1976 .

[297]  Jeremy J. Baumberg,et al.  Localized and delocalized plasmons in metallic nanovoids , 2006 .

[298]  J. R. Sambles,et al.  Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings , 1999 .

[299]  Antonio Luque,et al.  Will we exceed 50% efficiency in photovoltaics? , 2011 .

[300]  N. Rochat,et al.  Subwavelength optical absorber with an integrated photon sorter , 2012 .

[301]  Christian Seassal,et al.  Photonic crystal devices: some basics and selected topics , 2012 .

[302]  P. Lalanne,et al.  One-mode model and Airy-like formulae for one-dimensional metallic gratings , 2000 .

[303]  M. Neviere,et al.  Electromagnetic resonances in linear and nonlinear optics: phenomenological study of grating behavior through the poles and zeros of the scattering operator , 1995 .

[304]  T. Odom,et al.  Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors. , 2010, Nano letters.

[305]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[306]  George R. Bird,et al.  The Wire Grid as a Near-Infrared Polarizer , 1960 .

[307]  Jean-Luc Pelouard,et al.  Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array , 2008 .

[308]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[309]  Andrea Alù,et al.  Experimental realization of optical lumped nanocircuits at infrared wavelengths. , 2012, Nature materials.

[310]  I. Puscasu,et al.  Tuning infrared emission from microstrip arrays , 2012 .

[311]  Rémi Carminati,et al.  Optical resonances in one-dimensional dielectric nanorod arrays: field-induced fluorescence enhancement. , 2007, Optics letters.

[312]  Edmond Cambril,et al.  Study of the resonant behavior of waveguide-gratings Increasing the angular tolerance of guided-mode filters , 1999, Diffractive Optics and Micro-Optics.

[313]  R. W. Wood,et al.  XXVII. Diffraction gratings with controlled groove form and abnormal distribution of intensity , 1912 .

[314]  E. Polzik,et al.  Optical cavity cooling of mechanical modes of a semiconductor nanomembrane , 2012, Nature Physics.

[315]  J. Baumberg,et al.  Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces. , 2005, Physical review letters.

[316]  Jean-Luc Pelouard,et al.  λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. , 2011, Nano letters.

[317]  Christophe Dupuis,et al.  Free-standing guided-mode resonance band-pass filters: from 1D to 2D structures. , 2012, Optics express.

[318]  Jean-Jacques Greffet,et al.  Coherent thermal infrared emission by two-dimensional silicon carbide gratings , 2012 .

[319]  J. R. Brown,et al.  Squeezing millimeter waves into microns. , 2004, Physical review letters.

[320]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[321]  Julien Jaeck,et al.  Total routing and absorption of photons in dual color plasmonic antennas , 2011 .

[322]  R. Carminati,et al.  Highly directional radiation generated by a tungsten thermal source. , 2005, Optics letters.

[323]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[324]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[325]  Albert Polman,et al.  Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells , 2009 .

[326]  Aeneas Wiener,et al.  Surface plasmons and nonlocality: a simple model. , 2013, Physical review letters.

[327]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[328]  A. Friesem,et al.  Resonant grating waveguide structures , 1997 .

[329]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[330]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[331]  L. Novotný,et al.  Antennas for light , 2011 .

[332]  J.-L. Pelouard,et al.  Infrared plasmonic detectors , 2011, OPTO.

[333]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[334]  M. Helm,et al.  Chapter 1 The Basic Physics of Intersubband Transitions , 1999 .

[335]  Jean-Luc Pelouard,et al.  Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering. , 2013, Optics letters.

[336]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[337]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[338]  Jean-Luc Pelouard,et al.  Free-standing subwavelength metallic gratings for snapshot multispectral imaging , 2010 .

[339]  Esteban Moreno,et al.  Extraordinary optical transmission without plasmons: the s-polarization case , 2006 .

[340]  J. R. Sambles,et al.  Double-period zero-order metal gratings as effective selective absorbers , 2000 .

[341]  S. Collin,et al.  Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector , 2003 .

[342]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[343]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[344]  E. Drouard,et al.  Photonic crystals and optical mode engineering for thin film photovoltaics. , 2013, Optics express.

[345]  Salim Boutami,et al.  Compact and polarization controlled 1.55μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror , 2007 .

[346]  Michel Orrit,et al.  Single metal nanoparticles: optical detection, spectroscopy and applications , 2011 .

[347]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[348]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[349]  Yi Cui,et al.  Light trapping in solar cells: can periodic beat random? , 2012, ACS nano.

[350]  P. Lalanne,et al.  Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. , 2002, Physical review letters.

[351]  K. Hane,et al.  Variable optical reflectance of a self-supported Si grating , 2006 .