Retinal Oscillations Carry Visual Information to Cortex

Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs) and thalamic outputs (spikes) and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz), is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40–80 Hz) and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.

[1]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[2]  B J Richmond,et al.  Lateral geniculate neurons in behaving primates. III. Response predictions of a channel model with multiple spatial-to-temporal filters. , 1991, Journal of neurophysiology.

[3]  Ovidiu F. Jurjuţ,et al.  The oscillation score: an efficient method for estimating oscillation strength in neuronal activity. , 2008, Journal of neurophysiology.

[4]  B J Richmond,et al.  Lateral geniculate neurons in behaving primates. I. Responses to two-dimensional stimuli. , 1991, Journal of neurophysiology.

[5]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[6]  N. Logothetis,et al.  Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex , 2008, Current Biology.

[7]  Daniel J. Uhlrich,et al.  Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat , 1985, Nature.

[8]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[9]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[10]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[11]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. , 1990, Journal of neurophysiology.

[12]  Robert C. Liu,et al.  Variability and information in a neural code of the cat lateral geniculate nucleus. , 2001, Journal of neurophysiology.

[13]  James Theiler,et al.  Correlated Firing Improves Stimulus Discrimination in a Retinal Model , 2004, Neural Computation.

[14]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[15]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[16]  Greg J. Stephens,et al.  See globally, spike locally: oscillations in a retinal model encode large visual features , 2006, Biological Cybernetics.

[17]  Reinhard Eckhorn,et al.  Rigorous and extended application of information theory to the afferent visual system of the cat , 2004, Biological Cybernetics.

[18]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[19]  M W Levine,et al.  Statistics of the maintained discharge of cat retinal ganglion cells. , 1983, The Journal of physiology.

[20]  E Ahissar,et al.  Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Verzeano,et al.  Periodic activity in the visual system of the cat. , 1967, Vision research.

[22]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[23]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[24]  G. Mogenson,et al.  PHOTICALLY AND ELECTRICALLY ELICITED RESPONSES IN THE CENTRAL VISUAL SYSTEM OF THE SQUIRREL MONKEY. , 1964, Experimental neurology.

[25]  M. Raichle The Brain's Dark Energy , 2006, Science.

[26]  B. Knight,et al.  Response variability and timing precision of neuronal spike trains in vivo. , 1997, Journal of neurophysiology.

[27]  W D Heiss,et al.  [Multimodal interval histograms of the continuous activity of retinal cat neurons]. , 1966, Kybernetik.

[28]  Todd Miller,et al.  matplotlib – A Portable Python Plotting Package , 2006 .

[29]  Melanie R. Bernard,et al.  Abbreviated Title: , 2017 .

[30]  W.-D. Heiss,et al.  Multimodale Intervallhistogramme der Daueraktivität von retinalen Neuronen der Katze , 1966, Kybernetik.

[31]  Maneesh Sahani,et al.  Evidence Optimization Techniques for Estimating Stimulus-Response Functions , 2002, NIPS.

[32]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[33]  Daniel E. Wollman,et al.  Phase locking of neuronal responses to the vertical refresh of computer display monitors in cat lateral geniculate nucleus and striate cortex , 1995, Journal of Neuroscience Methods.

[34]  M. Tachibana,et al.  Light-evoked oscillatory discharges in retinal ganglion cells are generated by rhythmic synaptic inputs. , 2004, Journal of neurophysiology.

[35]  B. Granger Ipython: a System for Interactive Scientific Computing Python: an Open and General- Purpose Environment , 2007 .

[36]  Björn Granseth,et al.  Unitary EPSCs of corticogeniculate fibers in the rat dorsal lateral geniculate nucleus in vitro. , 2003, Journal of neurophysiology.

[37]  Tomás Gedeon,et al.  Dejittered Spike-Conditioned Stimulus Waveforms Yield Improved Estimates of Neuronal Feature Selectivity and Spike-Timing Precision of Sensory Interneurons , 2005, The Journal of Neuroscience.

[38]  Rajesh P. N. Rao,et al.  Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. , 2001, Journal of neurophysiology.

[39]  R. Shapley,et al.  The origin of the S (slow) potential in the mammalian Lateral Geniculate Nucleus , 1984, Experimental Brain Research.

[40]  Maria V. Sanchez-Vives,et al.  Influence of low and high frequency inputs on spike timing in visual cortical neurons. , 1997, Cerebral cortex.

[41]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[42]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.

[43]  P. Latham,et al.  Retinal ganglion cells act largely as independent encoders , 2001, Nature.

[44]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[45]  Friedrich T. Sommer,et al.  Information transmission in oscillatory neural activity , 2008, Biological Cybernetics.

[46]  R. Reid,et al.  Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus , 1998, Nature.

[47]  H. Barlow,et al.  MAINTAINED ACTIVITY IN THE CAT'S RETINA IN LIGHT AND DARKNESS , 1957, The Journal of general physiology.

[48]  W. Heiss,et al.  [Distribution of impulse of continuous activity of single optic nerve fibers. Effects of light, ischemia, strychnine and barbiturate]. , 1965, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[49]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[50]  Matteo Carandini,et al.  Thalamic filtering of retinal spike trains by postsynaptic summation. , 2007, Journal of vision.

[51]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[52]  Qingbo Wang,et al.  Feedforward Excitation and Inhibition Evoke Dual Modes of Firing in the Cat's Visual Thalamus during Naturalistic Viewing , 2007, Neuron.

[53]  H. Barlow,et al.  Change of organization in the receptive fields of the cat's retina during dark adaptation , 1957, The Journal of physiology.

[54]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[55]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[56]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[57]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[58]  Michael Harpham December , 1855, The Hospital.

[59]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[60]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[61]  Partha P. Mitra,et al.  Sampling Properties of the Spectrum and Coherency of Sequences of Action Potentials , 2000, Neural Computation.

[62]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[63]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[64]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[65]  James Gordon,et al.  Entrainment to Video Displays in Primary Visual Cortex of Macaque and Humans , 2004, The Journal of Neuroscience.

[66]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[67]  Chun-I Yeh,et al.  Temporal precision in the neural code and the timescales of natural vision , 2007, Nature.

[68]  Iman H. Brivanlou,et al.  Mechanisms of Concerted Firing among Retinal Ganglion Cells , 1998, Neuron.

[69]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[70]  G. Laurent,et al.  Multiplexing using synchrony in the zebrafish olfactory bulb , 2004, Nature Neuroscience.

[71]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[72]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[73]  M. Quirk,et al.  Construction and analysis of non-Poisson stimulus-response models of neural spiking activity , 2001, Journal of Neuroscience Methods.

[74]  Christian K. Machens,et al.  Linearity of Cortical Receptive Fields Measured with Natural Sounds , 2004, The Journal of Neuroscience.

[75]  M. Tachibana,et al.  Synchronized retinal oscillations encode essential information for escape behavior in frogs , 2005, Nature Neuroscience.