Barycentric rational interpolation at quasi-equidistant nodes

A collection of recent papers reveals that linear barycentric rational interpolation with the weights suggested by Floater and Hormann is a good choice for approximating smooth functions, especially when the interpolation nodes are equidistant. In the latter setting, the Lebesgue constant of this rational interpolation process is known to grow only logarithmically with the number of nodes. But since practical applications not always allow to get precisely equidistant samples, we relax this condition in this paper and study the Floater‐Hormann family of rational interpolants at distributions of nodes which are only almost equidistant. In particular, we show that the corresponding Lebesgue constants still grow logarithmically, albeit with a larger constant than in the case of equidistant nodes.

[1]  Kergin Interpolants of Holomorphic Functions , 1997 .

[2]  Kai Hormann,et al.  Università Della Svizzera Italiana Usi Technical Report Series in Informatics on the Lebesgue Constant of Berrut's Rational Interpolant at Equidistant Nodes , 2022 .

[3]  Thomas Bloom,et al.  ZEROS OF RANDOM POLYNOMIALS ON C m , 2006 .

[4]  Thomas Bloom,et al.  Random polynomials and (pluri)potential theory , 2007 .

[5]  Jean-Paul Berrut,et al.  Linear Rational Finite Differences from Derivatives of Barycentric Rational Interpolants , 2012, SIAM J. Numer. Anal..

[6]  Alano Ancona,et al.  Sur une conjecture concernant la capacite et l'effilement , 1984 .

[7]  Len Bos,et al.  Polynomial Interpretation of Holomorphic Functions in $\c$ and $\c^n$ , 1992 .

[8]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[9]  Winfried B. Müller,et al.  A remark on polynomial function over finite commutative rings with identity , 1979 .

[10]  Thomas Bloom,et al.  Asymptotics for Christoffel functions of planar measures , 2008 .

[11]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[12]  On Kergin interpolation in the disk , 1983 .

[13]  V P Zaharjuta,et al.  TRANSFINITE DIAMETER, ČEBYŠEV CONSTANTS, AND CAPACITY FOR COMPACTA IN , 1975 .

[14]  Weighted polynomials and weighted pluripotential theory , 2006, math/0610330.

[15]  Charles A. Micchelli,et al.  A formula for Kergin interpolation in Rk , 1980 .

[16]  Jean-Paul Berrut,et al.  Rational functions for guaranteed and experimentally well-conditioned global interpolation , 1988 .

[17]  Robert Berman,et al.  Growth of balls of holomorphic sections and energy at equilibrium , 2008, 0803.1950.

[18]  B. A. Taylor,et al.  The dirichlet problem for a complex Monge-Ampère equation , 1976 .

[19]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[20]  Kai Hormann,et al.  On the Lebesgue constant of barycentric rational interpolation at equidistant nodes , 2012, Numerische Mathematik.

[21]  T. Bloom,et al.  The distribution of extremal points for Kergin interpolations: real case , 1998 .

[22]  Kai Hormann,et al.  Barycentric rational interpolation with no poles and high rates of approximation , 2007, Numerische Mathematik.

[23]  Norm Levenberg,et al.  WEIGHTED PLURIPOTENTIAL THEORY RESULTS OF BERMAN-BOUCKSOM , 2010, 1010.4035.

[24]  Len Bos,et al.  Some remarks on the Feje´r problem for lagrange interpolation in several variables , 1990 .

[25]  L. Bos,et al.  On the Convergence of Optimal Measures , 2008 .

[26]  Thomas Ransford,et al.  Potential Theory in the Complex Plane: Bibliography , 1995 .

[27]  M. Andersson,et al.  Complex Kergin Interpolation , 1991 .

[28]  B. A. Taylor,et al.  A new capacity for plurisubharmonic functions , 1982 .

[29]  T. Bloom,et al.  Transfinite diameter notions in ℂN and integrals of Vandermonde determinants , 2007, 0712.2844.

[30]  Smooth submanifolds intersecting any analytic curve in a discrete set , 2004, math/0402379.