Functorial Models for Petri Nets

We show that although the algebraic semantics of place/transition Petri nets under the collective token philosophy can be fully explained in terms of strictly symmetric monoidal categories, the analogous construction under the individual token philosophy is not completely satisfactory, because it lacks universality and also functoriality. We introduce the notion of pre-nets to overcome this, obtaining a fully satisfactory categorical treatment, where the operational semantics of nets yields an adjunction. This allows us to present a uniform logical description of net behaviors under both the collective and the individual token philosophies in terms of theories and theory morphisms in partial membership equational logic. Moreover, since the universal property of adjunctions guarantees that colimit constructions on nets are preserved in our algebraic models, the resulting semantic framework has good compositional properties.

[1]  Valeria de Paiva,et al.  A Linear Specification Language for Petri Nets , 1991 .

[2]  P. S. Thiagarajan,et al.  An Event Structure Semantics for General Petri Nets , 1996, Theor. Comput. Sci..

[3]  Grzegorz Rozenberg,et al.  Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency , 1988, Lecture Notes in Computer Science.

[4]  Vladimiro Sassone,et al.  An axiomatization of the category of Petri net computations , 1998, Mathematical Structures in Computer Science.

[5]  David B. Benson The Basic Algebraic Structures in Categories of Derivations , 1975, Inf. Control..

[6]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[7]  Günter Hotz,et al.  Eine Algebraisierung des Syntheseproblems von Schaltkreisen I , 1965, J. Inf. Process. Cybern..

[8]  Raymond R. Devillers,et al.  Sequential and Concurrent Behaviour in Petri Net Theory , 1987, Theor. Comput. Sci..

[9]  Vladimiro Sassone,et al.  Higher dimensional transition systems , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[10]  Madhavan Mukund Petri Nets and Step Transition Systems , 1992, Int. J. Found. Comput. Sci..

[11]  Wolfgang Reisig,et al.  The Non-sequential Behavior of Petri Nets , 1983, Inf. Control..

[12]  Wolfgang Reisig,et al.  Place or Transition Petri Nets , 1996, Petri Nets.

[13]  José Meseguer,et al.  Specification and proof in membership equational logic , 2000, Theor. Comput. Sci..

[14]  Rüdiger Valk,et al.  Foundations of Computer Science: Potential - Theory - Cognition, to Wilfried Brauer on the occasion of his sixtieth birthday , 1997 .

[15]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains , 1979, Semantics of Concurrent Computation.

[16]  Till Mossakowski,et al.  Equivalences among Various Logical Frameworks of Partial Algebras , 1995, CSL.

[17]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains, Part I , 1981, Theor. Comput. Sci..

[18]  Gordon D. Plotkin,et al.  Configuration structures , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[19]  F. W. Lawvere,et al.  Some algebraic problems in the context of functorial semantics of algebraic theories , 1968 .

[20]  P. S. Thiagarajan,et al.  A logic for distributed transition systems , 1988, REX Workshop.

[21]  José Meseguer,et al.  Representation Theorems for Petri Nets , 1997, Foundations of Computer Science: Potential - Theory - Cognition.

[22]  Glynn Winskel,et al.  An introduction to event structures , 1988, REX Workshop.

[23]  Bodo Pareigis,et al.  Categories and Functors , 1970 .

[24]  Glynn Winskel,et al.  Petri Nets, Algebras, Morphisms, and Compositionality , 1987, Inf. Comput..

[25]  Marek A. Bednarczyk,et al.  General morphisms of Petri nets , 1999 .

[26]  José Meseguer,et al.  Process versus Unfolding Semantics for Place/Transition Petri Nets , 1996, Theor. Comput. Sci..

[27]  Marek A. Bednarczyk,et al.  General Morphisms of Petri Nets (Extended Abstract) , 1999, ICALP.

[28]  José Meseguer,et al.  Specification and proof in membership equational logic , 2000, Theor. Comput. Sci..

[29]  Roberto Bruni,et al.  Functorial semantics for Petri nets under the individual token philosophy , 1999, CTCS.

[30]  Wolfgang Reisig Petri Nets: An Introduction , 1985, EATCS Monographs on Theoretical Computer Science.

[31]  Michael Pfender,et al.  Universal algebra in s-monoidal categories , 1974 .

[32]  José Meseguer,et al.  Petri Nets Are Monoids , 1990, Inf. Comput..

[33]  Narciso Martí-Oliet,et al.  Maude: specification and programming in rewriting logic , 2002, Theor. Comput. Sci..

[34]  Roberto Bruni,et al.  Recent Trends in Algebraic Development Techniques , 2002, Lecture Notes in Computer Science.

[35]  Vladimiro Sassone,et al.  An Axiomatization of the Algebra of Petri Net Concatenable Processes , 1996, Theor. Comput. Sci..

[36]  José Meseguer,et al.  Membership algebra as a logical framework for equational specification , 1997, WADT.

[37]  Roberto Bruni,et al.  A Comparison of Petri Net Semantics under the Collective Token Philosophy , 1998, ASIAN.

[38]  Carolyn Brown,et al.  A categorical linear framework for Petri nets , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[39]  C. Petri Kommunikation mit Automaten , 1962 .

[40]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[41]  José Meseguer,et al.  Mapping tile logic into rewriting logic , 1997, WADT.