Brightband Identification Based on Vertical Profiles of Reflectivity from the WSR-88D

Abstract The occurrence of a bright band, a layer of enhanced reflectivity due to melting of aggregated snow, increases uncertainties in radar-based quantitative precipitation estimation (QPE). The height of the brightband layer is an indication of 0°C isotherm and can be useful in identifying areas of potential icing for aviation and in the data assimilation for numerical weather prediction (NWP). Extensive analysis of vertical profiles of reflectivity (VPRs) derived from the Weather Surveillance Radar-1988 Doppler (WSR-88D) base level data showed that the brightband signature could be easily identified from the VPRs. As a result, an automated brightband identification (BBID) scheme has been developed. The BBID algorithm can determine from a volume scan mean VPR and a background freezing level height from a numerical weather prediction model whether a bright band exists and the height of the brightband layer. The paper presents a description of the BBID scheme and evaluation results from a large dataset ...

[1]  Isztar Zawadzki,et al.  Error Statistics of VPR Corrections in Stratiform Precipitation , 2005 .

[2]  Brian A. Colle,et al.  The Limitations of the WSR-88D Radar Network for Quantitative Precipitation Measurement over the Coastal Western United States , 1999 .

[3]  W. Krajewski,et al.  Large-Sample Evaluation of Two Methods to Correct Range-Dependent Error for WSR-88D Rainfall Estimates , 2001 .

[4]  Barry E. Schwartz,et al.  An Hourly Assimilation–Forecast Cycle: The RUC , 2004 .

[5]  Matthias Steiner,et al.  Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data , 1995 .

[6]  A. Bemis,et al.  A QUANTITATIVE STUDY OF THE “BRIGHT BAND” IN RADAR PRECIPITATION ECHOES , 1950 .

[7]  Frédéric Fabry,et al.  Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation , 1995 .

[8]  G. Galli,et al.  Three Methods to Determine Profiles of Reflectivity from Volumetric Radar Data to Correct Precipitation Estimates , 2000 .

[9]  Hervé Andrieu,et al.  Identification of Vertical Profiles of Radar Reflectivity for Hydrological Applications Using an Inverse Method. Part II: Formulation. , 1995 .

[10]  H. Andrieu,et al.  Identification of Vertical Profiles of Reflectivity from Volume Scan Radar Data , 1999 .

[11]  Richard E. Carbone,et al.  Characteristics through the Melting Layer of Stratiform Clouds. , 1984 .

[12]  Robert L. Lee,et al.  The Application of RadarGauge Comparisons to Operational Precipitation Profile Corrections , 1995 .

[13]  J. Gourley,et al.  Automated Detection of the Bright Band Using WSR-88D Data , 2003 .

[14]  Jay P. Breidenbach,et al.  Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity , 2000 .

[15]  Catherine J. Smith,et al.  The Reduction of Errors Caused by Bright Bands in Quantitative Rainfall Measurements Made Using Radar , 1986 .

[16]  T. Takeda,et al.  垂直レーダーで観測した降水雲中の融解層付近の微物理過程;垂直レーダーで観測した降水雲中の融解層付近の微物理過程;Micro-Physical Processes around Melting Layer in Precipitating Clouds as Observedby Vertically Pointing Radar , 1978 .

[17]  Travis M. Smith,et al.  An Automated Technique to Quality Control Radar Reflectivity Data , 2007 .

[18]  Daniel Sempere-Torres,et al.  Identification of the bright band through the analysis of volumetric radar data , 2000 .

[19]  Andrew J. Heymsfield,et al.  Structure of the Melting Layer in Mesoscale Convective System Stratiform Precipitation , 1989 .

[20]  W. Schmid,et al.  Raindrop Size Distributions and the Radar Bright Band , 1996 .

[21]  M. Kitchen,et al.  Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation , 1994 .

[22]  Urs Germann,et al.  Mesobeta Profiles to Extrapolate Radar Precipitation Measurements above the Alps to the Ground Level , 2002 .

[23]  F. Martin Ralph,et al.  Coastal Orographic Rainfall Processes Observed by Radar during the California Land-Falling Jets Experiment , 2003 .

[24]  B. J. Mason,et al.  Factors influencing radar‐echo intensities in the melting layer , 1956 .

[25]  Timothy J. Smyth,et al.  Radar estimates of rainfall rates at the ground in bright band and non‐bright band events , 1998 .