A unified capacity analysis for wireless systems with joint multiuser scheduling and antenna diversity in Nakagami fading channels

In this paper, we present a cross-layer analytical framework to jointly investigate antenna diversity and multiuser scheduling under the generalized Nakagami fading channels. We derive a unified capacity formula for the multiuser scheduling system with different multiple-input multiple-output antenna schemes, including: 1) selective transmission/selective combining (ST/SC); 2) maximum ratio transmission/maximum ratio combining (MRT/MRC); 3) ST/MRC; and 4) space-time block codes (STBC). Our analytical results lead to the following four observations regarding the interplay of multiuser scheduling and antenna diversity. First, the higher the Nakagami fading parameter, the lower the multiuser diversity gain for all the considered antenna schemes. Second, from the standpoint of multiuser scheduling, the multiple antennas with the ST/SC method can be viewed as virtual users to amplify multiuser diversity order. Third, the boosted array gain of the MRT/MRC scheme can compensate the detrimental impact of the reduced amount of fading gain on multiuser scheduling, thereby resulting in greater capacity than the ST/SC method. Last, employing the STBC scheme together with multiuser diversity may cause capacity loss due to the reduced amount of fading gain, but without the supplement of array gain.

[1]  R. Michael Buehrer,et al.  The impact of multiuser diversity on space-time block coding , 2003, IEEE Communications Letters.

[2]  C. Geiss,et al.  An introduction to probability theory , 2008 .

[3]  David Tse,et al.  Opportunistic beamforming using dumb antennas , 2002, IEEE Trans. Inf. Theory.

[4]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[5]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[6]  Vincent K. N. Lau,et al.  The role of transmit diversity on wireless communications-reverse link analysis with partial feedback , 2002, IEEE Trans. Commun..

[7]  Ness B. Shroff,et al.  Opportunistic transmission scheduling with resource-sharing constraints in wireless networks , 2001, IEEE J. Sel. Areas Commun..

[8]  W. C. Y. Lee,et al.  Estimate of channel capacity in Rayleigh fading environment , 1990 .

[9]  H. A. David,et al.  Order Statistics (2nd ed). , 1981 .

[10]  Christoph Günther,et al.  Comment on "Estimate of channel capacity in Rayleigh fading environment , 1996 .

[11]  Ranjan K. Mallik,et al.  Analysis of transmit-receive diversity in Rayleigh fading , 2003, IEEE Trans. Commun..

[12]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[13]  Philip A. Whiting,et al.  The use of diversity antennas in high-speed wireless systems: capacity gains, fairness issues, multi-user scheduling , 2001 .

[14]  Liesbet Van der Perre,et al.  Performance analysis of combined transmit-SC/receive-MRC , 2001, IEEE Trans. Commun..

[15]  A. Goldsmith,et al.  Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques , 1999, IEEE Transactions on Vehicular Technology.

[16]  Pravin Varaiya,et al.  Capacity of fading channels with channel side information , 1997, IEEE Trans. Inf. Theory.

[17]  Gennaro Fedele N-branch diversity reception of mary DPSK signals in slow and nonselective nakagami fading , 1996, Eur. Trans. Telecommun..

[18]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[19]  G. A. Mack,et al.  Order Statistics (2nd Ed.) , 1983 .

[20]  Mohamed-Slim Alouini,et al.  Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis , 2000 .

[21]  Gordon L. Stuber,et al.  Principles of mobile communication (2nd ed.) , 2001 .

[22]  Wei Wang,et al.  Impact of multiuser diversity and channel variability on adaptive OFDM , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[23]  Helmut Bölcskei,et al.  An overview of MIMO communications - a key to gigabit wireless , 2004, Proceedings of the IEEE.

[24]  A. Goldsmith,et al.  Capacity of Nakagami multipath fading channels , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[25]  Chiung-Jang Chen,et al.  Coverage and capacity enhancement in multiuser MIMO systems with scheduling , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[26]  Arogyaswami Paulraj,et al.  Space-time block codes: a capacity perspective , 2000, IEEE Communications Letters.

[27]  Sergio Verdú,et al.  Spectral efficiency in the wideband regime , 2002, IEEE Trans. Inf. Theory.

[28]  Titus K. Y. Lo Maximum ratio transmission , 1999, IEEE Trans. Commun..

[29]  Raymond Knopp,et al.  Information capacity and power control in single-cell multiuser communications , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[30]  A. Jalali,et al.  Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system , 2000, VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026).

[31]  Jack M. Holtzman,et al.  Asymptotic analysis of proportional fair algorithm , 2001, 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598).

[32]  Niranjan Joshi,et al.  On transmit diversity and scheduling in wireless packet data , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[33]  David Tse,et al.  Multiaccess Fading Channels-Part I: Polymatroid Structure, Optimal Resource Allocation and Throughput Capacities , 1998, IEEE Trans. Inf. Theory.

[34]  Gordon L. Stüber Principles of mobile communication , 1996 .

[35]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .