Electronic Structure, Chemical Bonding and Magnetic Properties in the Intermetallic Series Sc$_{2}$Fe(Ru$_{1-x}$Rh$_{x}$)$_{5}$B$_{2}$ from First Principles

First-principles, density-functional studies of the electronic structure, chemical bonding, ground-state magnetic ordering, and exchange-interaction parameters have been performed for the entire Sc2Fe Ru1−xRhx 5B2 series of magnetic compounds. The results indicate that their magnetic properties depend in an extremely sensitive way on the degree of band filling and bandwidth. Continuous substitution of Ru by Rh changes the ground state from an antiferromagnet to a ferromagnet, as well as increases the effective spin moment caused by filling the bands with five additional electrons per formula unit together with a narrowing of the 4d band. The correlations between the character of the chemical bonding and the resulting exchange couplings are discussed. The enhancement of Fe-Fe exchange coupling caused by Rh/Ru atoms is estimated. Trends for the macroscopic ordering temperatures are correctly reproduced.

[1]  M. Katsnelson,et al.  Local spin excitations and Curie temperature of iron , 1985 .

[2]  J. S. Rowlinson,et al.  PHASE TRANSITIONS , 2021, Topics in Statistical Mechanics.

[3]  G. Samolyuk,et al.  On accuracy of different cluster models used in describing ordering phase transitions in fcc alloys , 1999 .

[4]  Richard Dronskowski,et al.  Electronic structure, chemical bonding, and finite‐temperature magnetic properties of full Heusler alloys , 2006, J. Comput. Chem..

[5]  W. Jung,et al.  ZN11RH18B8 AND ZN10MRH18B8 WITH M = SC, TI, V, CR, MN, FE, CO, NI, CU, AL,SI, GE, SN : NEW TERNARY AND QUATERNARY ZINC RHODIUM BORIDES , 1998 .

[6]  R. F. Peart,et al.  Solid-state Physics , 1964, Nature.

[7]  F. Freibert,et al.  Itinerant-to-localized electron transition in perovskite CaRu1−xRhxO3 , 1997 .

[8]  P. Müller,et al.  Ternary Rhodium Borides A3Rh5B2 (A = Mg, Sc) and Quaternary Derivatives A2MRh5B2. Preparation, Crystal Structure (M = Main Group and 3 d Elements), and Magnetism (M = Mn, Fe) , 2001 .

[9]  Richard Dronskowski,et al.  Chemically tuning between ferromagnetism and antiferromagnetism by combining theory and synthesis in iron/manganese rhodium borides. , 2002, Angewandte Chemie.

[10]  O. Mryasov Magnetic interactions and phase transformations in FeM, M = (Pt, Rh) ordered alloys , 2005 .

[11]  M. Tosi,et al.  Highlights of condensed-matter theory : Varenna on Lake Como, Villa Monastero, 28 June - 16 July, 1983 , 1985 .

[12]  J. Villain La structure des substances magnetiques , 1959 .

[13]  Vladimir Antropov,et al.  Aspects of spin dynamics and magnetic interactions , 1999 .

[14]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[15]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[16]  Richard Dronskowski,et al.  Ferromagnetism in Transition Metals: A Chemical Bonding Approach. , 1999, Angewandte Chemie.

[17]  R. Prange,et al.  Local-band theory of itinerant ferromagnetism. I. Fermi-liquid theory , 1977 .

[18]  Harmon,et al.  Spin dynamics in magnets: Equation of motion and finite temperature effects. , 1996, Physical review. B, Condensed matter.

[19]  J. Janak,et al.  Uniform susceptibilities of metallic elements , 1977 .

[20]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[21]  Richard Dronskowski,et al.  Electronic structure and magnetic exchange coupling in ferromagnetic full Heusler alloys , 2005 .

[22]  F. Bloch,et al.  Zur Theorie des Ferromagnetismus , 1930 .

[23]  A. B. Harris Spin-Wave Spectra of Yttrium and Gadolinium Iron Garnet , 1963 .

[24]  Vladimir Antropov,et al.  First-principles exchange interactions in Fe, Ni, and Co , 1999 .

[25]  W. Jung,et al.  Scandium Iridium Boride Sc3Ir5B2 and the Quaternary Derivatives Sc2MIr5B2 with M = Be, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ga, or Ge: Preparation, Crystal Structure, and Physical Properties , 1998 .

[26]  Richard Dronskowski,et al.  Itinerant Ferromagnetism and Antiferromagnetism from a Chemical Bonding Perspective , 2002 .

[27]  J. V. Vleck A Survey of the Theory of Ferromagnetism , 1945 .

[28]  A. Chatterjee,et al.  Magnetic susceptibility of ferromagnetic metals: Application to nickel , 1983 .

[29]  R. Kikuchi A Theory of Cooperative Phenomena , 1951 .

[30]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[31]  A. Yoshimori A New Type of Antiferromagnetic Structure in the Rutile Type Crystal , 1959 .

[32]  S. H. Liu Quasispin model of itinerant magnetism: High-temperature theory , 1977 .

[33]  Richard Dronskowski,et al.  Rational synthetic tuning between itinerant antiferromagnetism and ferromagnetism in the complex boride series Sc2FeRu(5-n)RhnB2 (0, 2007, Chemistry.

[34]  R. Gu,et al.  Dominance of the spin-wave contribution to the magnetic phase transition in FeRh , 2005 .

[35]  V. A. Gubanov,et al.  Exchange interactions and spin-wave stiffness in ferromagnetic metals , 1984 .

[36]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .