On probability of link availability in original and modified AODV, FSR and OLSR using 802.11 and 802.11p

Mobile Ad-hoc NETworks (MANETs) comprise on wireless mobile nodes that are communicating with each other without any infrastructure. Vehicular Ad-hoc NETwork (VANET) is a special type of MANETs in which vehicles with high mobility need to communicate with each other. In this paper, we present a novel framework for link availability of paths for static as well as dynamic networks. Moreover, we evaluate our frame work for routing protocols performance with different number of nodes in MANETs and in VANETs. We select three routing protocols namely Ad-hoc On-demand Distance Vector (AODV), Fish-eye State Routing (FSR) and Optimized Link State Routing (OLSR). Furthermore, we have also modified default parameters of selected protocols to check their efficiencies. Performance of these protocols is analyzed using three performance metrics; Packet Delivery Ratio (PDR), Normalized Routing Overhead (NRO) and End-to-End Delay (E2ED) against varying scalabilities of nodes. We perform these simulations with NS-2 using TwoRayGround propagation model. The SUMO simulator is used to generate a random mobility pattern for VANETs. From the extensive simulations, we observe that AODV outperforms among all three protocols.