The origin of RNA and "my grandfather's axe".

The origin of RNA is one of the most formidable problems facing prebiotic chemists. We consider RNA as a product of evolution, as opposed to the more conventional view of RNA as originally being the product of abiotic processes. We have come to accept that life's informational polymers have changed in chemical structure since their emergence, which presents a quandary similar to the paradox of "My Grandfather's Axe". Here, we discuss reasons why all contemporary components of RNA--the nucleobases, ribose, and phosphate--are not likely the original components of the first informational polymer(s) of life. We also evaluate three distinct models put forth as pathways for how the earliest informational polymers might have assembled. We see the quest to uncover the ancestors of RNA as an exciting scientific journey, one that is already providing additional chemical constraints on the origin of life and one that has the potential to produce self-assembling materials, novel catalysis, and bioactive compounds.

[1]  John M. Beierle,et al.  Self-Assembling Sequence-Adaptive Peptide Nucleic Acids , 2009, Science.

[2]  J. Ferris Catalysis and prebiotic RNA synthesis , 1993, Origins of life and evolution of the biosphere.

[3]  A. Schwartz,et al.  Hydrogen bonding in the template-directed oligomerization of a pyrimidine nucleotide analogue , 1995, Journal of Molecular Evolution.

[4]  S. Benner,et al.  Synthesis of carbohydrates in mineral-guided prebiotic cycles. , 2011, Journal of the American Chemical Society.

[5]  L E Orgel,et al.  The origin of life--a review of facts and speculations. , 1998, Trends in biochemical sciences.

[6]  F. De Riccardis,et al.  Mapping the landscape of potentially primordial informational oligomers: oligodipeptides and oligodipeptoids tagged with triazines as recognition elements. , 2007, Angewandte Chemie.

[7]  M. Robertson,et al.  Rates of decomposition of ribose and other sugars: implications for chemical evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Grover,et al.  Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution , 2012, PloS one.

[9]  P. Moore,et al.  Crystal structures of natural olivines Note: variety hortonolite , 1968 .

[10]  A. Eschenmoser Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life's origin: a retrospective. , 2011, Angewandte Chemie.

[11]  A. Weber The Sugar Model: Catalysis by Amines and Amino Acid Products , 2001, Origins of life and evolution of the biosphere.

[12]  J. Xie,et al.  Mapping the landscape of potentially primordial informational oligomers: (3'→2')-D-phosphoglyceric acid linked acyclic oligonucleotides tagged with 2,4-disubstituted 5-aminopyrimidines as recognition elements. , 2011, Chemistry, an Asian journal.

[13]  L. Orgel,et al.  Studies in prebiotic synthesis. VI. Synthesis of purine nucleosides. , 1968, Journal of molecular biology.

[14]  Heather D. Bean,et al.  Glyoxylate as a Backbone Linkage for a Prebiotic Ancestor of RNA , 2006, Origins of Life and Evolution of Biospheres.

[15]  E. Meggers,et al.  Synthesis and properties of the simplified nucleic acid glycol nucleic acid. , 2010, Accounts of chemical research.

[16]  S. Benner,et al.  Is there a common chemical model for life in the universe? , 2004, Current Opinion in Chemical Biology.

[17]  G. F. Joyce,et al.  Selective derivatization and sequestration of ribose from a prebiotic mix. , 2004, Journal of the American Chemical Society.

[18]  J. Sutherland,et al.  Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions , 2009, Nature.

[19]  P. Nielsen Peptide Nucleic Acids and the Origin of Life , 2007, Chemistry & biodiversity.

[20]  F. Westheimer Why nature chose phosphates. , 1987, Science.

[21]  C. Switzer,et al.  An Alternative Nucleobase Code: Characterization of Purine–Purine DNA Double Helices Bearing Guanine–Isoguanine and Diaminopurine 7‐Deaza‐Xanthine Base Pairs , 2008, Chembiochem : a European journal of chemical biology.

[22]  A. Keefe,et al.  Are polyphosphates or phosphate esters prebiotic reagents? , 2004, Journal of Molecular Evolution.

[23]  L. Orgel,et al.  Carbonyl Sulfide-Mediated Prebiotic Formation of Peptides , 2004, Science.

[24]  J. Prousek Fenton chemistry in biology and medicine , 2007 .

[25]  N. Hud,et al.  Guanine, Adenine, and Hypoxanthine Production in UV‐Irradiated Formamide Solutions: Relaxation of the Requirements for Prebiotic Purine Nucleobase Formation , 2010, Chembiochem : a European journal of chemical biology.

[26]  Loren Dean Williams,et al.  Cations in charge: magnesium ions in RNA folding and catalysis. , 2012, Current opinion in structural biology.

[27]  R. Krishnamurthy,et al.  Mapping the landscape of potentially primordial informational oligomers: oligo-dipeptides tagged with orotic acid derivatives as recognition elements. , 2009, Angewandte Chemie.

[28]  Sabino Veintemillas-Verdaguer,et al.  Synthesis of pyrimidines and triazines in ice: implications for the prebiotic chemistry of nucleobases. , 2009, Chemistry.

[29]  L. Orgel,et al.  Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. , 1970, Journal of molecular biology.

[30]  R. Eritja,et al.  Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues. , 2013, Journal of the American Chemical Society.

[31]  A. Eschenmoser,et al.  The Search for the Chemistry of Life′s Origin , 2008 .

[32]  J. Szostak,et al.  The Origins of Nucleotides , 2011 .

[33]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.

[34]  E. Wagner,et al.  Chemie von a-Aminonitrilen. Aldomerisierung von Glycolaldehyd-phosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte† , 1990 .

[35]  J. Dworkin,et al.  Alternative bases in the RNA world: The prebiotic synthesis of urazole and its ribosides , 2004, Journal of Molecular Evolution.

[36]  M. Sephton,et al.  Organic compounds in carbonaceous meteorites. , 2002, Natural product reports.

[37]  F. Crick Origin of the Genetic Code , 1967, Nature.

[38]  N. Hud,et al.  Formation of a beta-pyrimidine nucleoside by a free pyrimidine base and ribose in a plausible prebiotic reaction. , 2007, Journal of the American Chemical Society.

[39]  G. Whitesides,et al.  Self-assembly based on the cyanuric acid-melamine lattice , 1990 .

[40]  N. Hud,et al.  Addressing the Problems of Base Pairing and Strand Cyclization in Template‐Directed Synthesis , 2007, Chemistry & biodiversity.

[41]  S. Benner,et al.  Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. , 2012, Accounts of chemical research.

[42]  N. Hud,et al.  Intercalation-mediated synthesis and replication: a new approach to the origin of life. , 2000, Journal of theoretical biology.

[43]  J. Dworkin,et al.  A kinetic estimate of the free aldehyde content of aldoses. , 2000, Carbohydrate research.

[44]  J. Eisinger,et al.  Basic principles in nucleic acid chemistry , 1974 .

[45]  J. Lehn,et al.  Molecular recognition directed self-assembly of ordered supramolecular strands by cocrystallization of complementary molecular components , 1990 .

[46]  L. Orgel,et al.  Studies in prebiotic synthesis. VII , 1972, Journal of Molecular Evolution.

[47]  N. Hud,et al.  Enhanced Nonenzymatic Ligation of Homopurine Miniduplexes: Support for Greater Base Stacking in a Pre‐RNA World , 2013, Chembiochem : a European journal of chemical biology.

[48]  A. Schoffstall,et al.  Phosphorylation mechanisms in chemical evolution , 1985, Origins of life and evolution of the biosphere.

[49]  Y. Tor,et al.  Genetic alphabetic order: what came before A? , 2005, Organic & biomolecular chemistry.

[50]  Nicholas V Hud,et al.  Enzymatic behavior by intercalating molecules in a template-directed ligation reaction. , 2004, Angewandte Chemie.

[51]  Xiaoyu Li,et al.  DNA-catalyzed polymerization. , 2002, Journal of the American Chemical Society.

[52]  A. Schwartz,et al.  Hydrogen bonding in the template-directed oligomerization of a pyrimidine nucleotide analogue , 2004, Journal of Molecular Evolution.

[53]  A. Eschenmoser,et al.  Mapping the landscape of potentially primordial informational oligomers: oligodipeptides tagged with 2,4-disubstituted 5-aminopyrimidines as recognition elements. , 2007, Angewandte Chemie.

[54]  Heather D. Bean,et al.  DNA and RNA in anhydrous media: duplex, triplex, and G-quadruplex secondary structures in a deep eutectic solvent. , 2010, Angewandte Chemie.

[55]  Y. Tor,et al.  Refining the genetic alphabet: a late-period selection pressure? , 2012, Astrobiology.

[56]  A. Eschenmoser,et al.  Chemical etiology of nucleic acid structure , 2000 .

[57]  N. Hud,et al.  Addressing the Problems of Base Pairing and Strand Cyclization in Template‐Directed Synthesis , 2007, Chemistry & biodiversity.

[58]  A W Schwartz,et al.  The case for an ancestral genetic system involving simple analogues of the nucleotides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Chiaolong Hsiao,et al.  RNA Folding and Catalysis Mediated by Iron (II) , 2012, PloS one.

[60]  C. Crestini,et al.  Formamide Chemistry and the Origin of Informational Polymers , 2007, Chemistry & biodiversity.

[61]  A. Anbar Elements and Evolution , 2008, Science.

[62]  R. Stribling,et al.  Attempted nonenzymatic template-directed oligomerizations on a polyadenylic acid template: Implications for the nature of the first genetic material , 2005, Journal of Molecular Evolution.

[63]  A. Eschenmoser,et al.  Warum Pentose‐ und nicht Hexose‐Nucleinsäuren??. Teil V. (Purin‐Purin)‐Basenpaarung in der homo‐DNS‐Reihe: Guanin, Isoguanin, 2,6‐Diaminopurin und Xanthin , 1998 .

[64]  Peter Scholz,et al.  Chemical Etiology of Nucleic Acid Structure: The α-Threofuranosyl-(3'→2') Oligonucleotide System , 2000 .

[65]  M. Pasek Rethinking early Earth phosphorus geochemistry , 2008, Proceedings of the National Academy of Sciences.

[66]  Hazen,et al.  Review Paper. Mineral evolution , 2008 .

[67]  P. Ts'o 6 – BASES, NUCLEOSIDES, AND NUCLEOTIDES , 1974 .

[68]  A. Schwartz Nucleotide analogs based on pentaerythritol — An hypothesis , 1993, Origins of life and evolution of the biosphere.

[69]  Nicholas V Hud,et al.  Primitive genetic polymers. , 2010, Cold Spring Harbor perspectives in biology.

[70]  N. Hud,et al.  Intercalation as a means to suppress cyclization and promote polymerization of base-pairing oligonucleotides in a prebiotic world , 2010, Proceedings of the National Academy of Sciences.

[71]  C. Klein Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins , 2005 .