Life's Solutions are Complex Fluids. A Mathematical Challenge

Classical thermodynamics and statistical mechanics describe systems in which nothing interacts with nothing. Even the highly refined theory of simple fluids does not deal very well with electrical interactions, boundary conditions, or flows, if at all. Electrical interactions, boundary conditions, and flows are essential features of living systems. Life without flow is death and so a different approach is needed to study biology alive. The theory of complex fluids deals with interactions, boundary conditions, and flows quite well as can be seen in its successful treatment of liquid crystals. I advocate treating ionic solutions in general as complex fluids, with microelements that are the solutes and components of the solution. Enzyme active sites are a special case where some solutes are reactants. Solutes are crowded into active sites of enzyme by the high density of protein charges. The electric field links chemical reactions to charges in the protein and surrounding solutions. Interactions potentiate catalysis and control biological function. I suspect that most chemical reactions that occur in liquids also need to be treated by the theory of complex fluids. The electron movements of these reactions occur in a temporary highly concentrated fluctuation, a transient spatial inhomogeneity in the bulk solution. The electron movements of these reactions (described by quantum mechanics) are coupled to the electric (and sometimes steric) fields of the bulk solution. I suspect the electron movements, inhomogeneities, and chemical reaction (in the condensed phase) need to be treated by the theory of complex fluids because everything interacts with everything else, in this system, as in so many others.

[1]  M. Gilson,et al.  Ligand configurational entropy and protein binding , 2007, Proceedings of the National Academy of Sciences.

[2]  Yuan-Ping Pang,et al.  Configurational entropy in protein-peptide binding: computational study of Tsg101 ubiquitin E2 variant domain with an HIV-derived PTAP nonapeptide. , 2009, Journal of molecular biology.

[3]  R. Tsien,et al.  Mechanism of ion permeation through calcium channels , 1984, Nature.

[4]  R. Eisenberg,et al.  Self-consistent analytic solution for the current and the access resistance in open ion channels. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Abraham Nitzan,et al.  A Dynamic Lattice Monte Carlo Model of Ion Transport in Inhomogeneous Dielectric Environments: Method and Implementation , 2000 .

[6]  S. Chung,et al.  Brownian dynamics study of ion transport in the vestibule of membrane channels. , 1998, Biophysical journal.

[7]  S. Kuyucak,et al.  A model of calcium channels. , 2000, Biochimica et biophysica acta.

[8]  Uwe Hollerbach,et al.  Dielectric boundary force and its crucial role in gramicidin. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion , 2009, The Journal of general physiology.

[10]  D. Franceschetti,et al.  Theory of small‐signal ac response of solids and liquids with recombining mobile charge , 1978 .

[11]  O. Zikanov Essential Computational Fluid Dynamics , 2010 .

[12]  J. Molina,et al.  Primitive models of ions in solution from molecular descriptions: a perturbation approach. , 2011, The Journal of chemical physics.

[13]  YunKyong Hyon,et al.  Energy variational approach to study charge inversion (layering) near charged walls , 2012 .

[14]  J. Barthel,et al.  Physical Chemistry of Electrolyte Solutions: Modern Aspects , 1998 .

[15]  F. Bezanilla,et al.  Sodium influxes in internally perfused squid giant axon during voltage clamp , 1969, The Journal of physiology.

[16]  F Bezanilla,et al.  Single sodium channels from the squid giant axon. , 1987, Biophysical journal.

[17]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[18]  D. Tobias,et al.  Introduction: Structure and Chemistry at Aqueous Interfaces , 2006 .

[19]  Dirk Gillespie,et al.  Density functional theory of the electrical double layer: the RFD functional , 2005 .

[20]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[21]  Anilesh Kumar,et al.  A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part I: Vapor pressure and heat of vaporization , 1986 .

[22]  K. Sharp,et al.  Electrostatic interactions in proteins. , 2002 .

[23]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[24]  S. Chung,et al.  Molecular dynamics estimates of ion diffusion in model hydrophobic and KcsA potassium channels. , 2000, Biophysical chemistry.

[25]  B. Pettitt,et al.  An Integral Equation Study of the Hydrophobic Interaction between Graphene Plates. , 2008, Journal of chemical theory and computation.

[26]  David K. Ferry,et al.  On the physics and modeling of small semiconductor devices—II: The very small device , 1980 .

[27]  B. Roux,et al.  Implicit solvent models. , 1999, Biophysical chemistry.

[28]  Weishi Liu,et al.  Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..

[29]  M. Bazant,et al.  Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.

[30]  W. Stühmer,et al.  Calcium channel characteristics conferred on the sodium channel by single mutations , 1992, Nature.

[31]  J. Barthel,et al.  Conductance of Electrolyte Solutions , 1968 .

[32]  Xi Chen,et al.  The Binding Database: data management and interface design , 2002, Bioinform..

[33]  J. D. Hemptinne,et al.  Multicomponent equations of state for electrolytes , 2007 .

[34]  Ernst Bamberg,et al.  ION TRANSPORT THROUGH THE GRAMICIDIN A CHANNEL , 1976 .

[35]  D. Case,et al.  Constant pH molecular dynamics in generalized Born implicit solvent , 2004, J. Comput. Chem..

[36]  B a2Ti9O,et al.  Dielectric Materials , 2000 .

[37]  Michael K. Gilson,et al.  Comparing Ligand Interactions with Multiple Receptors via Serial Docking , 2004, J. Chem. Inf. Model..

[38]  A. Warshel,et al.  Electrostatic effects in macromolecules: fundamental concepts and practical modeling. , 1998, Current opinion in structural biology.

[39]  M. Gilson,et al.  Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand. , 1995, Biophysical journal.

[40]  R. Balian The Perfect Gas , 1991 .

[41]  B. Honig,et al.  Destabilization of an alpha-helix-bundle protein by helix dipoles. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Mika A. Kastenholz,et al.  Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. , 2006, The Journal of chemical physics.

[43]  A. Warshel,et al.  Calculations of electrostatic energies in proteins. The energetics of ionized groups in bovine pancreatic trypsin inhibitor. , 1985, Journal of molecular biology.

[44]  A. Warshel,et al.  Electrostatic basis for enzyme catalysis. , 2006, Chemical reviews.

[45]  Tatsuo Itoh,et al.  Dielectric materials, devices, and circuits , 2002 .

[46]  Serge Durand-Vidal,et al.  Electrolytes at interfaces , 2000 .

[47]  Jelliffe. The Fitness of Environment. An Inquiry Into the Biological Significance of the Properties of Matter , 1913 .

[48]  Dirk Gillespie,et al.  Ion Accumulation in a Biological Calcium Channel: Effects of Solvent and Confining Pressure , 2001 .

[49]  R. M. Fuoss,et al.  The Kinetic Term in Electrolytic Conductance , 1958 .

[50]  M. Gilson,et al.  The physical basis of nucleic acid base stacking in water. , 2001, Biophysical journal.

[51]  T. Kristóf,et al.  Current and selectivity in a model sodium channel under physiological conditions: Dynamic Monte Carlo simulations. , 2012, Biochimica et biophysica acta.

[52]  B. Eisenberg,et al.  Self-organized models of selectivity in calcium channels , 2011, Physical biology.

[53]  M. Gilson,et al.  Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1. , 2003, Biochemistry.

[54]  Ping Zhang,et al.  On a micro‐macro model for polymeric fluids near equilibrium , 2007 .

[55]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[56]  Daniel D. Joseph,et al.  Fluid Dynamics Of Viscoelastic Liquids , 1990 .

[57]  M. Kurnikova,et al.  Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.

[58]  D. Levitt Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels. , 1985, Biophysical journal.

[59]  C. Tanford,et al.  Nature's Robots: A History of Proteins , 2001 .

[60]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[61]  B Montgomery Pettitt,et al.  Fast Calculations of Electrostatic Solvation Free Energy from Reconstructed Solvent Density using proximal Radial Distribution Functions. , 2011, The journal of physical chemistry letters.

[62]  P. Madden,et al.  Conductivity-viscosity-structure: unpicking the relationship in an ionic liquid. , 2007, The journal of physical chemistry. B.

[63]  S. Nordholm,et al.  Corrected Debye−Hückel Theory of Salt Solutions: Size Asymmetry and Effective Diameters , 2002 .

[64]  A. Warshel Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes. , 1981, Biochemistry.

[65]  M. Womack,et al.  Structural properties of voltage-dependent calcium channels. , 1993, International Review of Cytology.

[66]  J. Jerome Analysis of Charge Transport , 1996 .

[67]  Roland Roth,et al.  Fundamental measure theory for hard-sphere mixtures: a review , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[68]  Barry Honig,et al.  Reevaluation of the Born model of ion hydration , 1985 .

[69]  Dirk Gillespie,et al.  Two rings of negative charges in the cytosolic vestibule of type-1 ryanodine receptor modulate ion fluxes. , 2006, Biophysical journal.

[70]  J Andrew McCammon,et al.  Limitations of atom-centered dielectric functions in implicit solvent models. , 2005, The journal of physical chemistry. B.

[71]  Li Xue,et al.  Room temperature ionic liquids , 2001 .

[72]  L. Henderson The fitness of the environment , 1913 .

[73]  R. P. Bell,et al.  Modern Electrochemistry , 1966, Nature.

[74]  B Montgomery Pettitt,et al.  Molecular basis of the apparent near ideality of urea solutions. , 2007, Biophysical journal.

[75]  B. Eisenberg Crowded Charges in Ion Channels , 2010, 1009.1786.

[76]  M. Muir Physical Chemistry , 1888, Nature.

[77]  Gillian C. Lynch,et al.  Ion and solvent density distributions around canonical B-DNA from integral equations. , 2011, The journal of physical chemistry. B.

[78]  Shin-Ho Chung,et al.  A model of sodium channels. , 2005, Biochimica et biophysica acta.

[79]  K. Hess Advanced Theory of Semiconductor Devices , 1999 .

[80]  M. Ferrari,et al.  Osmotic pressure beyond concentration restrictions. , 2007, The journal of physical chemistry. B.

[81]  Uwe Hollerbach,et al.  Predicting Function from Structure Using the Poisson−Nernst−Planck Equations: Sodium Current in the Gramicidin A Channel , 2000 .

[82]  J. Kepler,et al.  Mathematical Modelling and Simulation of Ion Channels , 2009 .

[83]  G. Kontogeorgis,et al.  Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories , 2010 .

[84]  R. Eisenberg,et al.  NONEQUILIBRIUM RATE THEORY FOR CONDUCTION IN OPEN ION CHANNELS , 2012, The Random and Fluctuating World.

[85]  Shin-Ho Chung,et al.  Study of ionic currents across a model membrane channel using Brownian dynamics. , 1998, Biophysical journal.

[86]  Barry Honig,et al.  Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation , 1990 .

[87]  A. Warshel,et al.  Calculations of electrostatic interactions in biological systems and in solutions , 1984, Quarterly Reviews of Biophysics.

[88]  R. Eisenberg,et al.  Hydrodynamic model of temperature change in open ionic channels. , 1995, Biophysical journal.

[89]  B. Eisenberg PERMEATION AS A DIFFUSION PROCESS , 2008, 0807.0721.

[90]  S. G. Penoncello,et al.  18 Multiparameter equations of state , 2000 .

[91]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[92]  Lloyd L. Lee,et al.  Molecular Thermodynamics of Electrolyte Solutions , 2008 .

[93]  S. Sandler,et al.  An Equation of State for Electrolyte Solutions Covering Wide Ranges of Temperature, Pressure, and Composition , 2002 .

[94]  X Chen,et al.  BindingDB: a web-accessible molecular recognition database. , 2001, Combinatorial chemistry & high throughput screening.

[95]  S. Chung,et al.  Mechanisms of permeation and selectivity in calcium channels. , 2001, Biophysical journal.

[96]  R. M. Fuoss,et al.  CONDUCTANCE OF STRONG ELECTROLYTES AT FINITE DILUTIONS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[97]  A. McNabb,et al.  Flux ratio theorems for nonlinear membrane transport under nonstationary conditions. , 1988, Journal of theoretical biology.

[98]  Ion channel selectivity using an electric stew. , 2000, Biophysical journal.

[99]  D. Levitt,et al.  Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. , 1978, Biophysical journal.

[100]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[101]  J Norbury,et al.  Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels , 2008, European Journal of Applied Mathematics.

[102]  R Latorre,et al.  Ion permeation in normal and batrachotoxin-modified Na+ channels in the squid giant axon , 1991, The Journal of general physiology.

[103]  Udo Seifert,et al.  Nonlinear, electrocatalytic swimming in the presence of salt. , 2012, The Journal of chemical physics.

[104]  YunKyong Hyon,et al.  A mathematical model for the hard sphere repulsion in ionic solutions , 2011 .

[105]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[106]  F. Bezanilla,et al.  Time course of the sodium permeability change during a single membrane action potential , 1970, The Journal of physiology.

[107]  A. Warshel,et al.  What are the dielectric “constants” of proteins and how to validate electrostatic models? , 2001, Proteins.

[108]  D. Tosteson Membrane transport : people and ideas , 1989 .

[109]  Abraham Nitzan,et al.  The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents. , 2003, Biophysical journal.

[110]  J R A Beale,et al.  Solid State Electronic Devices , 1973 .

[111]  A. Hodgkin,et al.  Movement of radioactive potassium and membrane current in a giant axon , 1953, The Journal of physiology.

[112]  Guo-Wei Wei,et al.  Poisson-Boltzmann-Nernst-Planck model. , 2011, The Journal of chemical physics.

[113]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[114]  Nathan Ensmenger,et al.  Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age (review) , 2007 .

[115]  B. Eisenberg,et al.  Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.

[116]  Pavel Jungwirth,et al.  Ions at aqueous interfaces: from water surface to hydrated proteins. , 2008, Annual review of physical chemistry.

[117]  Michael K. Gilson,et al.  A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation , 2007, Proceedings of the National Academy of Sciences.

[118]  H. Brooks,et al.  Medical physiology , 1961 .

[119]  J. Hansen,et al.  Basic Concepts for Simple and Complex Liquids , 2003 .

[120]  J. Carrillo,et al.  A MAXIMUM ENTROPY PRINCIPLE BASED CLOSURE METHOD FOR MACRO-MICRO MODELS OF POLYMERIC MATERIALS , 2008 .

[121]  M. Gilson,et al.  Nucleic acid base-pairing and N-methylacetamide self-association in chloroform: affinity and conformation. , 1999, Biophysical chemistry.

[122]  Shin-Ho Chung,et al.  Proceedings of the Australian Physiological and Pharmacological Society Symposium: Ion Channels PREDICTING CHANNEL FUNCTION FROM CHANNEL STRUCTURE USING BROWNIAN DYNAMICS SIMULATIONS , 2001, Clinical and experimental pharmacology & physiology.

[123]  H. Engl,et al.  Inverse problems related to ion channels , 2007 .

[124]  B. Eisenberg Mass Action in Ionic Solutions. , 2011, Chemical physics letters.

[125]  Robert S. Eisenberg,et al.  Two- and Three-Dimensional Poisson–Nernst–Planck Simulations of Current Flow Through Gramicidin A , 2002, J. Sci. Comput..

[126]  Shin-Ho Chung,et al.  Influence of protein flexibility on the electrostatic energy landscape in gramicidin A , 2005, European Biophysics Journal.

[127]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[128]  E Jakobsson,et al.  Combined Monte Carlo and molecular dynamics simulation of hydrated lipid-cholesterol lipid bilayers at low cholesterol concentration. , 2001, Biophysical journal.

[129]  Olivier Bernard,et al.  New perspectives in transport phenomena in electrolytes , 1996 .

[130]  R. Buck Kinetics of bulk and interfacial ionic motion: microscopic bases and limits for the nernst—planck equation applied to membrane systems☆ , 1984 .

[131]  Michael K Gilson,et al.  On the theory of noncovalent binding. , 2004, Biophysical journal.

[132]  R. M. Fuoss Properties of Electrolytic Solutions. , 1935 .

[133]  B. Pettitt,et al.  Statistical Thermodynamic Approach to the Chemical Activities in Two-Component Solutions , 2004 .

[134]  Michael K. Gilson,et al.  Evaluating the Substrate-Envelope Hypothesis: Structural Analysis of Novel HIV-1 Protease Inhibitors Designed To Be Robust against Drug Resistance , 2010, Journal of Virology.

[135]  Charles L. Brooks,et al.  Generalized born model with a simple smoothing function , 2003, J. Comput. Chem..

[136]  T. Kristóf,et al.  Relating binding affinity to dynamical selectivity from dynamic monte carlo simulations of a model calcium channel , 2010 .

[137]  Shin-Ho Chung,et al.  Continuum electrostatics fails to describe ion permeation in the gramicidin channel. , 2002, Biophysical journal.

[138]  G. Meissner,et al.  Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. , 1986, The Journal of biological chemistry.

[139]  A. Warshel,et al.  How do serine proteases really work? , 1989, Biochemistry.

[140]  W. Kunz Specific Ion Effects , 2009 .

[141]  Michael K. Gilson,et al.  Fast Assignment of Accurate Partial Atomic Charges: An Electronegativity Equalization Method that Accounts for Alternate Resonance Forms , 2003, J. Chem. Inf. Comput. Sci..

[142]  D. Whiffen Thermodynamics , 1973, Nature.

[143]  Anilesh Kumar,et al.  Thermodynamic properties of aqueous solutions of mixed electrolytes: A new mixing rule , 1993 .

[144]  Shin-Ho Chung,et al.  Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics. , 2000, Biophysical journal.

[145]  J. Dzubiella,et al.  Ion-specific thermodynamics of multicomponent electrolytes: a hybrid HNC/MD approach. , 2009, The Journal of chemical physics.

[146]  Maria M. Reif,et al.  Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions. , 2011, The Journal of chemical physics.

[147]  Francisco Bezanilla,et al.  Ion Channels: From Conductance to Structure , 2008, Neuron.

[148]  D. Levitt General continuum analysis of transport through pores. I. Proof of Onsager's reciprocity postulate for uniform pore. , 1975, Biophysical journal.

[149]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes , 1974 .

[150]  B. Eisenberg Engineering channels: Atomic biology , 2008, Proceedings of the National Academy of Sciences.

[151]  D. Levitt Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel. , 1978, Biophysical journal.

[152]  N. Seidah,et al.  Transport of ions of one kind through thin membranes , 1974, The Journal of Membrane Biology.

[153]  Bob Eisenberg Ionic Channels in Biological Membranes: Natural Nanotubes , 1998 .

[154]  S. Bekheit,et al.  Ryanodine Calcium Channel: A Novel Channelopathy for Seizures , 2011, The neurologist.

[155]  Michael Fill,et al.  Ryanodine receptor calcium release channels. , 2002, Physiological reviews.

[156]  B. Eisenberg,et al.  Ion Channels as Devices , 2003, Bio-, Micro-, and Nanosystems (IEEE Cat. No.03EX733).

[157]  P. Hänggi,et al.  Activated barrier crossing : applications in physics, chemistry and biology , 1993 .

[158]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[159]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[160]  X Chen,et al.  The binding database: overview and user's guide. , 2001, Biopolymers.

[161]  R. Tsien,et al.  Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions , 1995, Neuron.

[162]  Gerhard Kahl,et al.  Fundamental measure theory for hard-sphere mixtures revisited: the White Bear version , 2002 .

[163]  Mika A. Kastenholz,et al.  Development of a lattice-sum method emulating nonperiodic boundary conditions for the treatment of electrostatic interactions in molecular simulations: a continuum-electrostatics study. , 2006, The Journal of chemical physics.

[164]  B. Pettitt,et al.  Accurate prediction of binding thermodynamics for DNA on surfaces. , 2011, The journal of physical chemistry. B.

[165]  A. Warshel Dynamics of enzymatic reactions. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[166]  A. Warshel,et al.  How important are entropic contributions to enzyme catalysis? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[167]  Xin Wen,et al.  BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities , 2006, Nucleic Acids Res..

[168]  G. Stell,et al.  The donnan equilibrium: a theoretical study of the effects of interionic forces. , 1986, Biophysical journal.

[169]  M. Schmidt,et al.  Binary non-additive hard sphere mixtures: fluid demixing, asymptotic decay of correlations and free fluid interfaces , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[170]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[171]  S. Spragg Biophysical chemistry , 1979, Nature.

[172]  B. Eisenberg,et al.  Selectivity sequences in a model calcium channel: role of electrostatic field strength , 2011, European Biophysics Journal.

[173]  R. Netz,et al.  Effective screening length and quasiuniversality for the restricted primitive model of an electrolyte solution. , 2009, The Journal of chemical physics.

[174]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[175]  R. Eisenberg,et al.  Constant fields and constant gradients in open ionic channels. , 1992, Biophysical journal.

[176]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[177]  D. Gillespie,et al.  Reinterpreting the anomalous mole fraction effect: the ryanodine receptor case study. , 2009, Biophysical journal.

[178]  R. Eisenberg,et al.  Computing numerically the access resistance of a pore , 2005, European Biophysics Journal.

[179]  Nathan A. Baker,et al.  Electrostatic interactions. , 2003, Methods of biochemical analysis.

[180]  M. Kurnikova,et al.  Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels , 2005, IEEE Transactions on NanoBioscience.

[181]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[182]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[183]  R. Eisenberg,et al.  Simulating Ion Permeation Through the ompF Porin Ion Channel Using Three-Dimensional Drift-Diffusion Theory , 2003 .

[184]  D. Gillespie Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. , 2008, Biophysical journal.

[185]  D. Fraenkel Monoprotic mineral acids analyzed by the smaller-ion shell model of strong electrolyte solutions. , 2011, The journal of physical chemistry. B.

[186]  Joanna Trylska,et al.  Thermodynamic linkage between the binding of protons and inhibitors to HIV‐1 protease , 2008, Protein science : a publication of the Protein Society.

[187]  Half-range expansion analysis for Langewin dynamics in the high-friction limit with a singular absorbing boundary condition: Noncharacteristic case , 1995 .

[188]  J. Macdonald Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes , 1953 .

[189]  Michael K Gilson,et al.  New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. , 2011, Journal of the American Chemical Society.

[190]  Michael K Gilson,et al.  Extraction of configurational entropy from molecular simulations via an expansion approximation. , 2007, The Journal of chemical physics.

[191]  K. Sharp,et al.  Exploration of the structural features defining the conduction properties of a synthetic ion channel. , 1999, Biophysical journal.

[192]  J. Thornton Electrostatic interactions in proteins , 1982, Nature.

[193]  P. Sperryn,et al.  Blood. , 1989, British journal of sports medicine.

[194]  Bruce Tidor,et al.  Additivity in the analysis and design of HIV protease inhibitors. , 2009, Journal of medicinal chemistry.

[195]  S. Bruzzone,et al.  Solvation thermodynamics of alkali and halide ions in ionic liquids through integral equations. , 2008, The Journal of chemical physics.

[196]  Arieh Warshel,et al.  Electrostatic contributions to binding of transition state analogues can be very different from the corresponding contributions to catalysis: phenolates binding to the oxyanion hole of ketosteroid isomerase. , 2007, Biochemistry.

[197]  Michael K Gilson,et al.  Sampling conformations in high dimensions using low-dimensional distribution functions. , 2009, The Journal of chemical physics.

[198]  J Andrew McCammon,et al.  Computing accurate potentials of mean force in electrolyte solutions with the generalized gradient-augmented harmonic Fourier beads method. , 2008, The Journal of chemical physics.

[199]  D. Gillespie,et al.  Is ryanodine receptor a calcium or magnesium channel? Roles of K+ and Mg2+ during Ca2+ release. , 2012, Cell calcium.

[200]  B. Eisenberg Ionic channels in biological membranes- electrostatic analysis of a natural nanotube , 1998, 1610.04123.

[201]  R. Eisenberg,et al.  Diffusion theory and discrete rate constants in ion permeation , 1988, The Journal of Membrane Biology.

[202]  C. Lécuyer Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age , 2006 .

[203]  Artem B Mamonov,et al.  Diffusion constant of K+ inside Gramicidin A: a comparative study of four computational methods. , 2006, Biophysical chemistry.

[204]  Bo Li,et al.  Minimization of Electrostatic Free Energy and the Poisson-Boltzmann Equation for Molecular Solvation with Implicit Solvent , 2009, SIAM J. Math. Anal..

[205]  A. Warshel,et al.  How much do enzymes really gain by restraining their reacting fragments? , 2002, Journal of the American Chemical Society.

[206]  Nathan A. Baker,et al.  Differential geometry based solvation model I: Eulerian formulation , 2010, J. Comput. Phys..

[207]  R. E. Taylor,et al.  10. Voltage Clamping of Excitable Membranes , 1982 .

[208]  W. Im,et al.  Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry , 2001 .

[209]  J. Dzubiella,et al.  Structure-thermodynamics relation of electrolyte solutions. , 2009, The Journal of chemical physics.

[210]  W. Almers,et al.  Non‐selective conductance in calcium channels of frog muscle: calcium selectivity in a single‐file pore. , 1984, The Journal of physiology.

[211]  B. Li,et al.  Continuum electrostatics for ionic solutions with non-uniform ionic sizes , 2009 .

[212]  Onsager Principle and Electrorheological Fluid Dynamics , 2008 .

[213]  D. Henderson,et al.  Insights from theory and simulation on the electrical double layer. , 2009, Physical chemistry chemical physics : PCCP.

[214]  B. Eisenberg Multiple Scales in the Simulation of Ion Channels and Proteins. , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[215]  M. Saraniti,et al.  A Poisson P3M Force Field Scheme for Particle-Based Simulations of Ionic Liquids , 2004 .

[216]  Bo Li,et al.  Dielectric Boundary Force in Molecular Solvation with the Poisson-Boltzmann Free Energy: A Shape Derivative Approach , 2011, SIAM J. Appl. Math..

[217]  W. Ebeling,et al.  On the Conductance of Symmetrical Electrolytes , 1966 .

[218]  D H Jones,et al.  Atomic biology , 2005, Heredity.

[219]  Kim A. Sharp,et al.  Electrostatic interactions in macromolecules , 1994 .

[220]  D. Levitt General continuum analysis of transport through pores. II. Nonuniform pores. , 1975, Biophysical journal.

[221]  B. Eisenberg,et al.  Progress and Prospects in Permeation , 1999, The Journal of general physiology.

[222]  D. Kwak,et al.  Energetic variational approach in complex fluids: Maximum dissipation principle , 2009 .

[223]  Gordon E. Moore Lithography and the future of Moore's law , 1995, Advanced Lithography.

[224]  J A McCammon,et al.  Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. , 2005, Physical review letters.

[225]  R. Eisenberg,et al.  From Structure to Function in Open Ionic Channels , 1999, The Journal of Membrane Biology.

[226]  M. Gilson,et al.  A new class of models for computing receptor-ligand binding affinities. , 1997, Chemistry & biology.

[227]  P. Turq,et al.  Electrical conductivity of mixed electrolytes: Modeling within the mean spherical approximation. , 2009, The journal of physical chemistry. B.

[228]  M. Gilson,et al.  Calculation of protein-ligand binding affinities. , 2007, Annual review of biophysics and biomolecular structure.

[229]  S H Chung,et al.  Test of Poisson-Nernst-Planck Theory in Ion Channels , 1999, The Journal of general physiology.

[230]  J. Lear,et al.  Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. , 1997, Biophysical journal.

[231]  B. Honig,et al.  Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis , 1988, Proteins.

[232]  M. Quesada-Pérez,et al.  Testing a modified model of the Poisson-Boltzmann theory that includes ion size effects through Monte Carlo simulations. , 2009, Physical chemistry chemical physics : PCCP.

[233]  W. H. Reinmuth Theory of Stationary Electrode Polarography , 1961 .

[234]  Philippe H. Hünenberger,et al.  Single-Ion Solvation , 2011 .

[235]  R. Eisenberg,et al.  Three-Dimensional Continuum Simulations of Ion Transport Through Biological Ion Channels: Effect of Charge Distribution in the Constriction Region of Porin , 2002 .

[236]  Shin-Ho Chung,et al.  Electrostatic basis of valence selectivity in cationic channels. , 2005, Biochimica et biophysica acta.

[237]  Zhenli Xu,et al.  Fast Analytical Methods for Macroscopic Electrostatic Models in Biomolecular Simulations , 2011, SIAM Rev..

[238]  Shin-Ho Chung,et al.  Modeling diverse range of potassium channels with Brownian dynamics. , 2002, Biophysical journal.

[239]  M. Gilson,et al.  Prediction of pH-dependent properties of proteins. , 1994, Journal of molecular biology.

[240]  D.L. Critchlow,et al.  Mosfet Scaling-the Driver of VLSI Technology , 1999, Proceedings of the IEEE.

[241]  Bixiang Wang,et al.  Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels , 2009, 0902.4290.

[242]  Maria M. Reif,et al.  Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. , 2011, The Journal of chemical physics.

[243]  B. Roux,et al.  Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions , 2010 .

[244]  S. Poelzing,et al.  A New Poisson-Nernst-Planck Equation (PNP-FS-IF) for Charge Inversion Near Walls , 2011 .

[245]  A. Ben-Naim Inversion of the Kirkwood–Buff theory of solutions: Application to the water–ethanol system , 1977 .

[246]  Bernard J. Matkowsky,et al.  The Kramers Problem in the Turnover Regime: The Role of the Stochastic Separatrix , 1991 .

[247]  S. Hagiwara,et al.  The calcium channel , 1983, Trends in Neurosciences.

[248]  J. E. Prue Interaction in Ionic Solutions , 1958, Nature.

[249]  S. Chung,et al.  Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. , 2000, Biophysical journal.

[250]  M. Gilson,et al.  A hierarchical method for generating low‐energy conformers of a protein‐ligand complex , 1998, Proteins.

[251]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[252]  R. Fuoss,et al.  Properties of Electrolytic Solutions. IV. The Conductance Minimum and the Formation of Triple Ions Due to the Action of Coulomb Forces1 , 1933 .

[253]  B. Ninham,et al.  Specific ion effects in solutions of globular proteins: comparison between analytical models and simulation. , 2005, Journal of Physical Chemistry B.

[254]  Harold L. Friedman,et al.  Electrolyte Solutions at Equilibrium , 1981 .

[255]  M K Gilson,et al.  Theoretical and experimental analysis of ionization equilibria in ovomucoid third domain. , 1998, Biochemistry.

[256]  B. Eisenberg,et al.  Analyzing the components of the free-energy landscape in a calcium selective ion channel by Widom's particle insertion method. , 2011, The Journal of chemical physics.

[257]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[258]  Benzhuo Lu,et al.  Computation of electrostatic forces between solvated molecules determined by the Poisson-Boltzmann equation using a boundary element method. , 2005, The Journal of chemical physics.

[259]  R. MacKinnon Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). , 2004 .

[260]  J. Hansen,et al.  Effective interactions between electric double layers. , 2000, Annual review of physical chemistry.

[261]  B. Nadler,et al.  Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[262]  G. Meissner Regulation of mammalian ryanodine receptors. , 2002, Frontiers in bioscience : a journal and virtual library.

[263]  Dirk Gillespie,et al.  Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor. , 2005, Biophysical journal.

[264]  Shin-Ho Chung,et al.  Reservoir boundaries in Brownian dynamics simulations of ion channels. , 2002, Biophysical Journal.

[265]  A. Ben-Naim Molecular theory of water and aqueous solutions , 2009 .

[266]  M. Gilson,et al.  Free energy, entropy, and induced fit in host-guest recognition: calculations with the second-generation mining minima algorithm. , 2004, Journal of the American Chemical Society.

[267]  Dirk Gillespie,et al.  (De)constructing the ryanodine receptor: modeling ion permeation and selectivity of the calcium release channel. , 2005, The journal of physical chemistry. B.

[268]  A. Warshel,et al.  Electrostatic basis for bioenergetics. , 2004, Methods in enzymology.

[269]  J L Sussman,et al.  Open "back door" in a molecular dynamics simulation of acetylcholinesterase. , 1994, Science.

[270]  B. Honig,et al.  On the calculation of electrostatic interactions in proteins. , 1985, Journal of molecular biology.

[271]  M K Gilson,et al.  Interpreting trends in the binding of cyclic ureas to HIV-1 protease. , 2001, Journal of molecular biology.

[272]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[273]  J Andrew McCammon,et al.  Electrostatic Free Energy and Its Variations in Implicit Solvent Models , 2022 .

[274]  R. M. Fuoss,et al.  The Conductance of Symmetrical Electrolytes.1a IV. Hydrodynamic and Osmotic Terms in the Relaxation Field , 1964 .

[275]  Alexander D. MacKerell,et al.  Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[276]  B. Dominy,et al.  Development of a generalized Born model parameterization for proteins and nucleic acids , 1999 .

[277]  Michael K. Gilson,et al.  Screening Drug-Like Compounds by Docking to Homology Models: A Systematic Study , 2006, J. Chem. Inf. Model..

[278]  Emil Alexov,et al.  Comparative study of generalized born models: Born radii and peptide folding. , 2005, The journal of physical chemistry. B.

[279]  Mark A. Ratner,et al.  Diffusion theory of multidimensional activated rate processes: The role of anisotropy , 1989 .

[280]  P. Sheng,et al.  Electrorheological fluid dynamics. , 2008, Physical review letters.

[281]  Shin-Ho Chung,et al.  Brownian dynamics investigation into the conductance state of the MscS channel crystal structure. , 2006, Biochimica et biophysica acta.

[282]  F. Bezanilla,et al.  Sodium and potassium conductance changes during a membrane action potential , 1970, The Journal of physiology.

[283]  Ping Zhang,et al.  On hydrodynamics of viscoelastic fluids , 2005 .

[284]  K. Dill,et al.  Aqueous alkali halide solutions: can osmotic coefficients be explained on the basis of the ionic sizes alone? , 2010, Physical chemistry chemical physics : PCCP.

[285]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[286]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[287]  Robert S. Eisenberg,et al.  Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux , 2002 .

[288]  Michael K Gilson,et al.  Host-guest complexes with protein-ligand-like affinities: computational analysis and design. , 2009, Journal of the American Chemical Society.

[289]  M. Gilson,et al.  Accelerated convergence of molecular free energy via superposition approximation-based reference states. , 2011, The Journal of chemical physics.

[290]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[291]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[292]  J. Martí,et al.  Effects of concentration on structure, dielectric, and dynamic properties of aqueous NaCl solutions using a polarizable model. , 2010, The Journal of chemical physics.

[293]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[294]  Zhan Chen,et al.  Differential geometry based solvation model II: Lagrangian formulation , 2011, Journal of mathematical biology.

[295]  Shin-Ho Chung,et al.  Conduction properties of KcsA measured using brownian dynamics with flexible carbonyl groups in the selectivity filter. , 2007, Biophysical journal.

[296]  Amit Singer,et al.  A Poisson--Nernst--Planck Model for Biological Ion Channels---An Asymptotic Analysis in a Three-Dimensional Narrow Funnel , 2009, SIAM J. Appl. Math..

[297]  Aqueous solutions of ionic liquids: study of the solution/vapor interface using molecular dynamics simulations. , 2008, Physical chemistry chemical physics : PCCP.

[298]  Weishi Liu,et al.  Asymptotic Expansions of I-V Relations via a Poisson-Nernst-Planck System , 2008, SIAM J. Appl. Dyn. Syst..

[299]  R. Keynes The ionic channels in excitable membranes. , 1975, Ciba Foundation symposium.

[300]  Bob Eisenberg,et al.  Living Transistors: a Physicist's View of Ion Channels , 2008 .

[301]  Jie Liang,et al.  Ionizable side chains at catalytic active sites of enzymes , 2012, European Biophysics Journal.

[302]  E. Ahlberg,et al.  Monte Carlo simulations of salt solutions: exploring the validity of primitive models. , 2009, The journal of physical chemistry. B.

[303]  Kamal Sarabandi,et al.  Electric Field-Shaping Microdevices for Manipulation of Collections of Microscale Objects , 2011, Proceedings of the IEEE.

[304]  Martin Burger,et al.  Inverse Problems Related to Ion Channel Selectivity , 2007, SIAM J. Appl. Math..

[305]  R. MacKinnon Potassium Channels and the Atomic Basis of Selective Ion Conduction , 2004, Angewandte Chemie.

[306]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[307]  Michael K. Gilson,et al.  Enhanced docking with the mining minima optimizer: Acceleration and side‐chain flexibility , 2002, J. Comput. Chem..

[308]  Shin-Ho Chung,et al.  Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels. , 2003, Biophysical journal.

[309]  Z. Schuss Singular Perturbation Methods in Stochastic Differential Equations of Mathematical Physics , 1980 .

[310]  M K Gilson,et al.  Energetics of charge–charge interactions in proteins , 1988, Proteins.

[311]  Viney Lather,et al.  Toward the Design of Mutation‐Resistant Enzyme Inhibitors: Further Evaluation of the Substrate Envelope Hypothesis , 2009, Chemical biology & drug design.

[312]  R. M. Fuoss,et al.  The Conductance of Symmetrical Electrolytes. V. The Conductance Equation1,2 , 1965 .

[313]  B. Honig,et al.  Calculation of electrostatic potentials in an enzyme active site , 1987, Nature.

[314]  D. Levitt,et al.  Modeling of Ion Channels , 1999, The Journal of general physiology.

[315]  D. Armstrong,et al.  Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases. , 2005, Analytical chemistry.

[316]  J. Simonin,et al.  Real Ionic Solutions in the Mean Spherical Approximation. 3. Osmotic and Activity Coefficients for Associating Electrolytes in the Primitive Model , 1998 .

[317]  D. Jenden,et al.  Effect of ryanodine on the calcium uptake system of skeletal muscle. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[318]  M K Gilson,et al.  The dielectric constant of a folded protein , 1986, Biopolymers.

[319]  A. Warshel Electrostatic Origin of the Catalytic Power of Enzymes and the Role of Preorganized Active Sites* , 1998, The Journal of Biological Chemistry.

[320]  Charles L. Brooks,et al.  The role of electrostatics in the binding of small ligands to enzymes , 1987 .

[321]  A. Warshel,et al.  Computer simulations of electron-transfer reactions in solution and in photosynthetic reaction centers. , 1991, Annual review of physical chemistry.

[322]  A. Compston Chance and design. , 1999, Journal of neurology.

[323]  Qiong Zheng,et al.  Second-order Poisson-Nernst-Planck solver for ion transport , 2011, J. Comput. Phys..

[324]  M. Gilson,et al.  Simulation of charge-mutant acetylcholinesterases. , 1995, Biochemistry.

[325]  Robert S. Eisenberg,et al.  Concentration-Dependent Shielding of Electrostatic Potentials Inside the Gramicidin A Channels , 2002 .

[326]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[327]  K. A. Connors The Free Energy , 2003 .

[328]  H. Miedema,et al.  Chemical modification of the bacterial porin OmpF: gain of selectivity by volume reduction. , 2006, Biophysical journal.

[329]  M. Maroncelli,et al.  The non-separability of “dielectric” and “mechanical” friction in molecular systems: A simulation study , 2000 .

[330]  E. Jakobsson,et al.  Brownian dynamics study of a multiply-occupied cation channel: application to understanding permeation in potassium channels. , 1994, Biophysical journal.

[331]  Dezso Boda,et al.  Volume exclusion in calcium selective channels. , 2008, Biophysical journal.

[332]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[333]  Bob Eisenberg,et al.  IONS IN FLUCTUATING CHANNELS: TRANSISTORS ALIVE , 2005, q-bio/0506016.

[334]  R. Eisenberg,et al.  FAST COMMUNICATION A DYNAMIC MODEL OF OPEN VESICLES IN FLUIDS , 2012 .

[335]  D. Levitt Interpretation of biological ion channel flux data--reaction-rate versus continuum theory. , 1986, Annual review of biophysics and biophysical chemistry.

[336]  O. Krishtal,et al.  Calcium currents in snail neurones , 1974, Pflügers Archiv.

[337]  J. P. Valleau,et al.  Electrical double layers. 4. Limitations of the Gouy-Chapman theory , 1982 .

[338]  Helen Pearson Protein engineering: The fate of fingers , 2008, Nature.

[339]  Boaz Nadler,et al.  Ionic Diffusion Through Protein Channels: From molecular description to continuum equations , 2003 .

[340]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[341]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[342]  A. Warshel,et al.  Macroscopic models for studies of electrostatic interactions in proteins: limitations and applicability. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[343]  M. Shimizu [Electrolyte solutions]. , 2019, [Kango] Japanese journal of nursing.

[344]  R. Podgornik,et al.  Beyond standard Poisson–Boltzmann theory: ion-specific interactions in aqueous solutions , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[345]  Michael K Gilson,et al.  Protein folding and binding: from biology to physics and back again. , 2011, Current opinion in structural biology.

[346]  A. Berezhkovskii,et al.  ACTIVATED RATE PROCESSES : A RELATION BETWEEN HAMILTONIAN AND STOCHASTIC THEORIES , 1994 .

[347]  J. Mccammon,et al.  Calculating pKa values in enzyme active sites , 2003, Protein science : a publication of the Protein Society.

[348]  A. Hodgkin,et al.  THE IONIC BASIS OF ELECTRICAL ACTIVITY IN NERVE AND MUSCLE , 1951 .

[349]  Ion channels allow atomic control of macroscopic transport , 2008 .

[350]  W. V. Roosbroeck Theory of the flow of electrons and holes in germanium and other semiconductors , 1950 .

[351]  A. Kornyshev,et al.  Double layer in ionic liquids: overscreening versus crowding. , 2010, Physical review letters.

[352]  J. Dzubiella,et al.  Ion-specific excluded-volume correlations and solvation forces. , 2010, Physical review letters.

[353]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[354]  P. Olver,et al.  Non-analytic solutions of nonlinear wave models , 1998 .

[355]  M. Gilson,et al.  The determinants of pKas in proteins. , 1996, Biochemistry.

[356]  G. Fredrickson The theory of polymer dynamics , 1996 .

[357]  Michael K Gilson The bioinformatics of molecular recognition , 2002, Journal of molecular recognition : JMR.

[358]  A. Warshel Computer simulations of enzyme catalysis: methods, progress, and insights. , 2003, Annual review of biophysics and biomolecular structure.

[359]  A. Warshel,et al.  Electrostatic control of charge separation in bacterial photosynthesis. , 1990, Biochimica et biophysica acta.

[360]  Z. Schuss,et al.  Brownian simulations and unidirectional flux in diffusion. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[361]  Francisco Bezanilla Gating of sodium and potassium channels , 2005, The Journal of Membrane Biology.

[362]  Hong Cao,et al.  HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants. , 2008, Journal of the American Chemical Society.

[363]  Shenggao Zhou,et al.  Mean-field description of ionic size effects with nonuniform ionic sizes: a numerical approach. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[364]  Jian-Guo Liu,et al.  Multi-scale phenomena in complex fluids : modeling, analysis and numerical simulation , 2009 .

[365]  D. Vasileska,et al.  Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation , 2010 .

[366]  Harold L. Friedman A Course in Statistical Mechanics , 1985 .

[367]  R. Eisenberg,et al.  Charges, currents, and potentials in ionic channels of one conformation. , 1993, Biophysical journal.

[368]  Robert S. Eisenberg,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study , 1997, SIAM J. Appl. Math..

[369]  R. Eisenberg Atomic Biology, Electrostatics, and Ionic Channels , 2008, 0807.0715.

[370]  YunKyong Hyon,et al.  Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. , 2010, The Journal of chemical physics.

[371]  Michael K. Gilson,et al.  The inclusion of electrostatic hydration energies in molecular mechanics calculations , 1991, J. Comput. Aided Mol. Des..

[372]  Paul E. Smith,et al.  A Kirkwood-Buff Derived Force Field for Aqueous Alkali Halides. , 2011, Journal of chemical theory and computation.

[373]  Michael K Gilson,et al.  Symmetry numbers for rigid, flexible, and fluxional molecules: theory and applications. , 2010, The journal of physical chemistry. B.

[374]  Jing Huang,et al.  Identification of Symmetries in Molecules and Complexes , 2004, J. Chem. Inf. Model..

[375]  Barry Honig,et al.  Focusing of electric fields in the active site of Cu‐Zn superoxide dismutase: Effects of ionic strength and amino‐acid modification , 1986, Proteins.

[376]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[377]  Jun Tan,et al.  Efficient calculation of configurational entropy from molecular simulations by combining the mutual‐information expansion and nearest‐neighbor methods , 2008, J. Comput. Chem..

[378]  V. Kairys,et al.  Using Protein Homology Models for Structure-Based Studies: Approaches to Model Refinement , 2006, TheScientificWorldJournal.

[379]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[380]  David J. Roulston,et al.  Bipolar Semiconductor Devices , 1990 .

[381]  K. Sharp,et al.  Macroscopic models of aqueous solutions : biological and chemical applications , 1993 .

[382]  Arieh Warshel,et al.  Energetics and Dynamics of Enzymatic Reactions , 2001 .

[383]  M. Gilson,et al.  The statistical-thermodynamic basis for computation of binding affinities: a critical review. , 1997, Biophysical journal.

[384]  Arieh Warshel,et al.  Exploring the origin of the ion selectivity of the KcsA potassium channel , 2003, Proteins.

[385]  Hyungsub Choi :Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age , 2007 .

[386]  B. Bagchi,et al.  Ionic self-diffusion in concentrated aqueous electrolyte solutions. , 2002, Physical review letters.

[387]  H. Cabezas,et al.  Some uses and misuses of thermodynamic models for dilute liquid solutions , 1993 .

[388]  W. Almers,et al.  The Ca channel in skeletal muscle is a large pore. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[389]  S. Marshall,et al.  The ionic product of water in highly concentrated aqueous electrolyte solutions , 1995 .

[390]  B. Eisenberg Life's Solutions are Not Ideal , 2011, 1105.0184.

[391]  W. Im,et al.  Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. , 2002, Journal of molecular biology.

[392]  A. Warshel,et al.  Evaluation of catalytic free energies in genetically modified proteins. , 1988, Journal of molecular biology.

[393]  B. Nadler,et al.  A PDE Formulation of Non‐Equilibrium Statistical Mechanics for Ionic Permeation , 2003 .

[394]  M. Gilson,et al.  Structural model for an AxxxG-mediated dimer of surfactant-associated protein C. , 2004, European journal of biochemistry.

[395]  J. Palmeri,et al.  Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[396]  A. Warshel,et al.  Energetics of enzyme catalysis. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[397]  Margaret Robson Wright,et al.  An Introduction to Aqueous Electrolyte Solutions , 2007 .

[398]  W. Fawcett Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern Microscopic Details , 2004 .

[399]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[400]  L. Xu,et al.  Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions. , 1999, Biophysical journal.

[401]  Chun Liu,et al.  An Introduction of Elastic Complex Fluids: An Energetic Variational Approach , 2009 .

[402]  R. Eisenberg,et al.  Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations , 1995 .

[403]  Zeev Schuss,et al.  Equilibrium and Recrossings of the Transition State: What Can Be Learned from Diffusion? , 2010 .

[404]  J. Barthel,et al.  Transport coefficients and apparent charges of concentrated electrolyte solutions – Equations for practical use , 1994 .

[405]  Mika A. Kastenholz,et al.  Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids. , 2006, The Journal of chemical physics.

[406]  G. Wei,et al.  Second-order Poisson Nernst-Planck solver for ion channel transport. , 2011, Journal of computational physics.

[407]  J. Dzubiella,et al.  Electrolytes in a nanometer slab-confinement: ion-specific structure and solvation forces. , 2010, The Journal of chemical physics.

[408]  Michael K. Gilson,et al.  Virtual Screening of Molecular Databases Using a Support Vector Machine , 2005, J. Chem. Inf. Model..

[409]  Julian W. Vincze,et al.  The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations. , 2010, The Journal of chemical physics.

[410]  A. Warshel,et al.  Role of active site residues in the glycosylase step of T4 endonuclease V. Computer simulation studies on ionization states. , 1999, Biochemistry.

[411]  Dirk Gillespie,et al.  Ca2+ selectivity of a chemically modified OmpF with reduced pore volume. , 2006, Biophysical journal.

[412]  D. Jenden,et al.  The pharmacology of ryanodine. , 1969, Pharmacological reviews.

[413]  Z. Siwy,et al.  Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. , 2008, Biophysical journal.

[414]  Shin-Ho Chung,et al.  Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. , 2002, Biophysical journal.

[415]  B. Eisenberg Channels as Enzymes: Oxymoron and Tautology , 2011, 1112.2363.

[416]  Barry Honig,et al.  A local dielectric constant model for solvation free energies which accounts for solute polarizability , 1992 .

[417]  Dirk Gillespie,et al.  Permeation properties of an engineered bacterial OmpF porin containing the EEEE-locus of Ca2+ channels. , 2004, Biophysical journal.

[418]  Shin-Ho Chung,et al.  Permeation of ions across the potassium channel: Brownian dynamics studies. , 1999, Biophysical journal.

[419]  Michael K. Gilson,et al.  Theory of Free Energy and Entropy in Noncovalent Binding , 2009 .

[420]  D. Gillespie,et al.  The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity. , 2008, Biophysical journal.

[421]  M. Saraniti,et al.  The Simulation of Ionic Charge Transport in Biological Ion Channels: An Introduction to Numerical Methods , 2006 .

[422]  R. Eisenberg,et al.  Surmounting barriers in ionic channels , 1988, Quarterly Reviews of Biophysics.

[423]  R. M. Fuoss The Velocity Field in Electrolytic Solutions , 1959 .

[424]  Arieh Warshel,et al.  Molecular dynamics simulations of biological reactions. , 2002, Accounts of chemical research.

[425]  C. A. Kraus The present status of the theory of electrolytes , 1938 .

[426]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[427]  M K Gilson,et al.  Theory of electrostatic interactions in macromolecules. , 1995, Current opinion in structural biology.

[428]  Robert S. Eisenberg,et al.  Ion flow through narrow membrane channels: part II , 1992 .

[429]  Shin-Ho Chung,et al.  Mechanisms of valence selectivity in biological ion channels , 2006, Cellular and Molecular Life Sciences CMLS.

[430]  D. Gillespie,et al.  Sieving experiments and pore diameter: it’s not a simple relationship , 2010, European Biophysics Journal.

[431]  P. Wolynes,et al.  The theory of ion transport through membrane channels. , 1985, Progress in biophysics and molecular biology.

[432]  H. Friedman,et al.  Ionic Solution Theory , 1962 .

[433]  H. Posch,et al.  “What is ‘liquid’? Understanding the states of matter” , 1998 .

[434]  W. Im,et al.  Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. , 2002, Journal of molecular biology.

[435]  Z. Schuss Theory and Applications of Stochastic Processes: An Analytical Approach , 2009 .

[436]  Michael K Gilson,et al.  Concepts in receptor optimization: targeting the RGD peptide. , 2006, Journal of the American Chemical Society.

[437]  R. M. Fuoss,et al.  THE CONDUCTANCE OF SYMMETRICAL ELECTROLYTES. I. POTENTIAL OF TOTAL FORCE , 1962 .

[438]  D. Gillespie,et al.  Steady-State Electrodiffusion from the Nernst-Planck Equation Coupled to Local Equilibrium Monte Carlo Simulations. , 2012, Journal of chemical theory and computation.

[439]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[440]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[441]  A. Warshel,et al.  Electrostatic energy and macromolecular function. , 1991, Annual review of biophysics and biophysical chemistry.

[442]  Michael K. Gilson,et al.  Tork: Conformational analysis method for molecules and complexes , 2003, J. Comput. Chem..

[443]  J. Trylska,et al.  Continuum molecular electrostatics, salt effects, and counterion binding—A review of the Poisson–Boltzmann theory and its modifications , 2008, Biopolymers.

[444]  M. Gilson,et al.  Calculation of cyclodextrin binding affinities: energy, entropy, and implications for drug design. , 2004, Biophysical journal.

[445]  D. Fraenkel Simplified electrostatic model for the thermodynamic excess potentials of binary strong electrolyte solutions with size-dissimilar ions , 2010 .

[446]  L. Xu,et al.  Permeation through the calcium release channel of cardiac muscle. , 1997, Biophysical journal.

[447]  E. Mccleskey,et al.  Permeation and selectivity in calcium channels. , 2003, Annual review of physiology.

[448]  B. Eisenberg,et al.  Steric selectivity in Na channels arising from protein polarization and mobile side chains. , 2007, Biophysical journal.

[449]  P. Turq,et al.  REAL IONIC SOLUTIONS IN THE MEAN SPHERICAL APPROXIMATION. 1. SIMPLE SALTS IN THE PRIMITIVE MODEL , 1996 .

[450]  M. Donohue,et al.  Recent Advances in Modeling Thermodynamic Properties of Aqueous Strong Electrolyte Systems , 1997 .

[451]  B. Pettitt,et al.  The behavior of ions near a charged wall-dependence on ion size, concentration, and surface charge. , 2010, The journal of physical chemistry. B.

[452]  P. Carloni,et al.  Molecular Dynamics in Physiological Solutions: Force Fields, Alkali Metal Ions, and Ionic Strength. , 2010, Journal of chemical theory and computation.

[453]  R. Eisenberg,et al.  A model of electrodiffusion and osmotic water flow and its energetic structure , 2011 .

[454]  R. Saykally,et al.  On the nature of ions at the liquid water surface. , 2006, Annual review of physical chemistry.

[455]  A. Kornyshev,et al.  Ionic liquid near a charged wall: structure and capacitance of electrical double layer. , 2008, The journal of physical chemistry. B.

[456]  Ray Luo,et al.  Accelerated Poisson–Boltzmann calculations for static and dynamic systems , 2002, J. Comput. Chem..

[457]  K. Sharp,et al.  Electrostatic interactions in macromolecules: theory and applications. , 1990, Annual review of biophysics and biophysical chemistry.

[458]  B. B. Owen,et al.  The Physical Chemistry of Electrolytic Solutions , 1963 .

[459]  B. Nadler,et al.  Langevin trajectories between fixed concentrations. , 2005, Physical review letters.

[460]  Barry Honig,et al.  Electrostatic Potentials near the Surface of DNA: Comparing Theory and Experiment , 1995 .

[461]  N. Seidah,et al.  Transport of ions of one kind through thin membranes , 1972, The Journal of Membrane Biology.

[462]  Ray Luo,et al.  Ligand-receptor docking with the Mining Minima optimizer , 2001, J. Comput. Aided Mol. Des..

[463]  Bernard J. Matkowsky,et al.  A direct approach to the exit problem , 1990 .

[464]  G. Hills,et al.  The conductance of electrolyte solutions , 1973 .

[465]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[466]  Ricardo M. Pytkowicz,et al.  Activity coefficients in electrolyte solutions , 1979 .

[467]  Giovanni Scalmani,et al.  A variational formulation of the polarizable continuum model. , 2010, The Journal of chemical physics.

[468]  D. Gillespie,et al.  Intracellular calcium release channels mediate their own countercurrent: the ryanodine receptor case study. , 2008, Biophysical journal.

[469]  D. Henderson,et al.  The effects of deviations from Lorentz–Berthelot rules on the properties of a simple mixture , 2008 .