Prym varieties and the geodesic flow onSO(n)
暂无分享,去创建一个
[1] R. Donagi. The tetragonal construction , 1981 .
[2] Boris Dubrovin,et al. Theta functions and non-linear equations , 1981 .
[3] A. Kirillov. The characters of unitary representations of Lie groups , 1968 .
[4] P. Moerbeke,et al. Linearization of Hamiltonian systems, Jacobi varieties and representation theory☆ , 1980 .
[5] S. Manakov,et al. Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body , 1976 .
[6] L. Haine. The algebraic complete integrability of geodesic flow onSO(N) , 1984 .
[7] W. Fulton. On the irreducibility of the moduli space of curves , 1982 .
[8] L. Haine. Geodesic flow on SO(4) and abelian surfaces , 1983 .
[9] H. McKean. Integrable systems and algebraic curves , 1979 .
[10] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[11] P. Moerbeke,et al. Completely Integrable Systems, Euclidean Lie-algebras, and Curves , 1980 .
[12] P. Moerbeke,et al. The algebraic integrability of geodesic flow onSO(4) , 1982 .
[13] Arnaud Beauville,et al. Prym varieties and the Schottky problem , 1977 .
[14] Boris Dubrovin,et al. Completely integrable Hamiltonian systems associated with matrix operators and Abelian varieties , 1977 .
[15] D. Mumford,et al. The spectrum of difference operators and algebraic curves , 1979 .
[16] D. Mumford. Prym Varieties I , 1974 .