Move blocked model predictive control with guaranteed stability and improved optimality using linear interpolation of base sequences

To mitigate the online computational load of model predictive control, move blocking, which parameterises either the input sequence or offset from the base sequence by fixing the decision variables over arbitrary time intervals, is commonly used. However, existing move blocking schemes use a fixed base sequence only and do not fully exploit the valuable properties from various base sequences. Thus, we propose the interpolated solution-based move blocking strategy which parameterises the offset from the convex combination of two complementary base sequences – infinite-horizon linear quadratic regulator solution and shifted previous solution – and optimises the interpolation parameter as an additional decision variable in the optimal control problem. This allows the controller to exploit the valuable properties from both solutions by choosing the optimal interpolation parameter and blocked offset according to the current state online. The proposed approach efficiently improves the optimality performance whileguaranteeing the recursive feasibility and closed-loop stability.

[1]  Chris Manzie,et al.  Optimal move blocking strategies for model predictive control , 2015, Autom..

[2]  J. M. Lee,et al.  Modeling of the polymerization of linear monomers in the presence of multifunctional units , 2017 .

[3]  Tae Hoon Oh,et al.  Transition Model for Simulated Moving Bed Under Nonideal Conditions , 2019, Industrial & Engineering Chemistry Research.

[4]  Stephen J. Wright,et al.  Warm-Start Strategies in Interior-Point Methods for Linear Programming , 2002, SIAM J. Optim..

[5]  Mark Rice,et al.  A numerically robust state-space approach to stable-predictive control strategies , 1998, Autom..

[6]  J. A. Rossiter,et al.  Computationally efficient algorithms for constraint handling with guaranteed stability and near optimality , 2001 .

[7]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[8]  M. Morari,et al.  Move blocking strategies in receding horizon control , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  J. A. Méndez,et al.  State‐space approach to interpolation in MPC , 2000 .

[10]  Bilal Khan,et al.  Alternative parameterisation within predictive control: a systematic selection , 2013, Int. J. Control.

[11]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[12]  Jun-ichi Imura,et al.  Least-restrictive move-blocking model predictive control , 2010, Autom..

[13]  Jun-ichi Imura,et al.  Controlled invariant feasibility - A general approach to enforcing strong feasibility in MPC applied to move-blocking , 2009, Autom..

[14]  Basil Kouvaritakis,et al.  Linear Quadratic Feasible Predictive Control , 1998, Autom..

[15]  B. Kouvaritakis,et al.  A computationally efficient constrained predictive control law , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[16]  P. Grieder,et al.  Using interpolation to improve efficiency of multiparametric predictive control , 2005, Autom..

[17]  Chong Jin Ong,et al.  Reducing variables in Model Predictive Control of linear system with disturbances using singular value decomposition , 2014, Syst. Control. Lett..

[18]  Mohamed Elsayed Aly Abd Elaziz Okasha,et al.  A Model Predictive Control (MPC) Approach on Unit Quaternion Orientation Based Quadrotor for Trajectory Tracking , 2019, International Journal of Control, Automation and Systems.

[19]  Junmo Koo,et al.  Design of a self-tuning adaptive model predictive controller using recursive model parameter estimation for real-time plasma variable control , 2019, Comput. Chem. Eng..

[20]  Soo Jeon,et al.  Model predictive rollover prevention for steer-by-wire vehicles with a new rollover index , 2018, Int. J. Control.

[21]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[22]  Marko Bacic,et al.  General interpolation in MPC and its advantages , 2003, IEEE Trans. Autom. Control..

[23]  Rohan C. Shekhar,et al.  Robust variable horizon MPC with move blocking , 2012, Syst. Control. Lett..

[24]  Pao C. Chau,et al.  Process Control , 2002 .

[25]  Marko Bacic,et al.  Interpolation based computationally efficient predictive control , 2004 .

[26]  Se-Kyu Oh,et al.  Point-to-point iterative learning model predictive control , 2018, Autom..

[27]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[28]  J. M. Lee,et al.  Dynamic matrix control applied on propane-mixed refrigerant liquefaction process , 2017, Korean Journal of Chemical Engineering.

[29]  Liuping Wang,et al.  Exploiting Laguerre functions to improve the feasibility/performance compromise in MPC , 2008, 2008 47th IEEE Conference on Decision and Control.

[30]  Sebastian Engell Feedback control for optimal process operation , 2007 .

[31]  Jong Min Lee,et al.  Hybrid Nonlinear Model Predictive Control of LNT and Urealess SCR Aftertreatment System , 2019, IEEE Transactions on Control Systems Technology.

[32]  Yihang Ding,et al.  Interpolation methods in model predictive control: an overview , 2010, Int. J. Control.

[33]  Alberto Bemporad,et al.  Predictive Control for Linear and Hybrid Systems , 2017 .

[34]  Basil Kouvaritakis,et al.  Model Predictive Control , 2016 .