Millimeter-Wave Communications: Physical Channel Models, Design Considerations, Antenna Constructions, and Link-Budget

The millimeter wave (mmWave) frequency band spanning from 30 to 300 GHz constitutes a substantial portion of the unused frequency spectrum, which is an important resource for future wireless communication systems in order to fulfill the escalating capacity demand. Given the improvements in integrated components and enhanced power efficiency at high frequencies, wireless systems can operate in the mmWave frequency band. In this paper, we present a survey of the mmWave propagation characteristics, channel modeling, and design guidelines, such as system and antenna design considerations for mmWave, including the link budget of the network, which are essential for mmWave communication systems. We commence by introducing the main channel propagation characteristics of mmWaves followed by channel modeling and design guidelines. Then, we report on the main measurement and modeling campaigns conducted in order to understand the mmWave band’s properties and present the associated channel models. We survey the different channel models focusing on the channel models available for the 28, 38, 60, and 73 GHz frequency bands. Finally, we present the mmWave channel model and its challenges in the context of mmWave communication systems design.

[1]  P. B. Papazian,et al.  Study of the local multipoint distribution service radio channel , 1997, IEEE Trans. Broadcast..

[2]  A. G. Wagemans,et al.  Wideband indoor radio propagation measurements at 58 GHz , 1992 .

[3]  Akbar M. Sayeed,et al.  Deconstructing multiantenna fading channels , 2002, IEEE Trans. Signal Process..

[4]  Theodore S. Rappaport,et al.  Millimeter-Wave Human Blockage at 73 GHz with a Simple Double Knife-Edge Diffraction Model and Extension for Directional Antennas , 2016, 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall).

[5]  G. El Zein,et al.  Experimental investigation of the spatial and temporal characteristics of the 60 GHz radio propagation within residential environments , 2003, Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on.

[6]  Theodore S. Rappaport,et al.  Spatial and temporal characteristics of 60-GHz indoor channels , 2002, IEEE J. Sel. Areas Commun..

[7]  Mark A. Weissberger,et al.  An initial critical summary of models for predicting the attenuation of radio waves by trees , 1982 .

[8]  H. Hashemi,et al.  A 24-GHz SiGe phased-array receiver-LO phase-shifting approach , 2005, IEEE Transactions on Microwave Theory and Techniques.

[9]  A. Babakhani,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting , 2006, IEEE Journal of Solid-State Circuits.

[10]  Theodore S. Rappaport,et al.  Wideband mmWave channels: Implications for design and implementation of adaptive beam antennas , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[11]  Ariel Bleicher The 5G phone future [News] , 2013 .

[12]  Stuart D. Walker,et al.  4-Gbps Uncompressed Video Transmission over a 60-GHz Orbital Angular Momentum Wireless Channel , 2013, IEEE Wireless Communications Letters.

[13]  Theodore S. Rappaport,et al.  Ultra-wideband statistical channel model for non line of sight millimeter-wave urban channels , 2014, 2014 IEEE Global Communications Conference.

[14]  Iñigo Cuiñas,et al.  Measurement and Analysis of Propagation Mechanisms at 40 GHz: Viability of Site Shielding Forced by Obstacles , 2008, IEEE Transactions on Vehicular Technology.

[15]  Giuseppe Caire,et al.  Joint Spatial Division and Multiplexing: Opportunistic Beamforming, User Grouping and Simplified Downlink Scheduling , 2014, IEEE Journal of Selected Topics in Signal Processing.

[16]  Theodore S. Rappaport,et al.  Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands , 2014, IEEE Communications Magazine.

[17]  Theodore S. Rappaport,et al.  Millimeter Wave Channel Modeling and Cellular Capacity Evaluation , 2013, IEEE Journal on Selected Areas in Communications.

[18]  Lajos Hanzo,et al.  Dataset: Multi-Set Space-Time Shift-Keying With Reduced Detection Complexity , 2016 .

[19]  Lajos Hanzo,et al.  Near-Capacity Wireless Transceivers and Cooperative Communications in the MIMO Era: Evolution of Standards, Waveform Design, and Future Perspectives , 2011, Proceedings of the IEEE.

[20]  B. Langen,et al.  Reflection and transmission behaviour of building materials at 60 GHz , 1994, 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks - Catching the Mobile Future..

[21]  Roberto Verdone,et al.  Millimeter waves for short-range multimedia communication systems , 1998, Proc. IEEE.

[22]  Lajos Hanzo,et al.  Near-Capacity Multi-Functional MIMO Systems: Sphere-Packing, Iterative Detection and Cooperation , 2009 .

[23]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.

[24]  Theodore S. Rappaport,et al.  Indoor office wideband penetration loss measurements at 73 GHz , 2017, 2017 IEEE International Conference on Communications Workshops (ICC Workshops).

[25]  E. Violette,et al.  Millimeter-wave propagation in vegetation: experiments and theory , 1988 .

[26]  Dominic C. O'Brien,et al.  Wireless Myths, Realities, and Futures: From 3G/4G to Optical and Quantum Wireless , 2012, Proceedings of the IEEE.

[27]  Seunghwan Kim,et al.  Comparison of path loss models for indoor 30 GHz, 140 GHz, and 300 GHz channels , 2017, 2017 11th European Conference on Antennas and Propagation (EUCAP).

[28]  Kao-Cheng Huang,et al.  Millimeter-Wave Communication Systems , 2011, CMOS Millimeter-Wave Integrated Circuits for Next Generation Wireless Communication Systems.

[29]  S. Y. Seidel,et al.  Propagation measurements at 28 GHz to investigate the performance of local multipoint distribution service (LMDS) , 1995, Proceedings of GLOBECOM '95.

[30]  Takeshi Manabe,et al.  Effects of Antenna Directivity and Polarization on Indoor Multipath Propagation Characteristics at 60 GHz , 1996, IEEE J. Sel. Areas Commun..

[31]  Carl Wijting,et al.  Device-to-device communication as an underlay to LTE-advanced networks , 2009, IEEE Communications Magazine.

[32]  Moon-Soon Choi,et al.  Statistical Characteristics of 60 GHz Wideband Indoor Propagation Channel , 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.

[33]  R. Michael Buehrer,et al.  Mobile Radio Communications , 2003 .

[34]  Upamanyu Madhow,et al.  Channel Modeling and MIMO Capacity for Outdoor Millimeter Wave Links , 2010, 2010 IEEE Wireless Communication and Networking Conference.

[35]  Alexei Davydov,et al.  Performance evaluation of the isolated mmWave small cell , 2015, 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[36]  P.G.V. Charriere,et al.  A ray-based, millimetre wave urban propagation tool , 1995 .

[37]  Claude Oestges,et al.  The COST 2100 MIMO channel model , 2011, IEEE Wirel. Commun..

[38]  Guosen Yue,et al.  User grouping and scheduling for large scale MIMO systems with two-stage precoding , 2014, 2014 IEEE International Conference on Communications (ICC).

[39]  Upamanyu Madhow,et al.  Channel modeling for millimeter wave MIMO , 2010, 2010 Information Theory and Applications Workshop (ITA).

[40]  Lajos Hanzo,et al.  Multiuser Steered Multiset Space-Time Shift Keying for Millimeter-Wave Communications , 2017, IEEE Transactions on Vehicular Technology.

[41]  A. Maltsev,et al.  Statistical channel model for 60 GHz WLAN systems in conference room environment , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[42]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[43]  Chang-Soon Choi,et al.  Proposal of novel statistic channel model for millimeter wave WPAN , 2006, 2006 Asia-Pacific Microwave Conference.

[44]  J. Salo,et al.  An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM) , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[45]  Farooq Khan,et al.  mmWave mobile broadband (MMB): Unleashing the 3–300GHz spectrum , 2011, 34th IEEE Sarnoff Symposium.

[46]  Theodore S. Rappaport,et al.  Millimeter Wave Wireless Communications , 2014 .

[47]  Georgios B. Giannakis,et al.  Ultra-wideband communications: an idea whose time has come , 2003, 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications - SPAWC 2003 (IEEE Cat. No.03EX689).

[48]  Wilhelm Keusgen,et al.  Measurement and Ray-Tracing Simulation of the 60 GHz Indoor Broadband Channel: Model Accuracy and Parameterization , 2007 .

[49]  Theodore S. Rappaport,et al.  Millimeter-Wave 60 GHz Outdoor and Vehicle AOA Propagation Measurements Using a Broadband Channel Sounder , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[50]  Thomas Zwick,et al.  The COST259 Directional Channel Model-Part I: Overview and Methodology , 2006, IEEE Transactions on Wireless Communications.

[51]  Ralf R. Müller,et al.  MIMO channel modeling and the principle of maximum entropy , 2005, IEEE Transactions on Information Theory.

[52]  James V. Krogmeier,et al.  Millimeter Wave Beamforming for Wireless Backhaul and Access in Small Cell Networks , 2013, IEEE Transactions on Communications.

[53]  P.F.M. Smulders,et al.  Frequency-domain measurement of the millimeter wave indoor radio channel , 1995 .

[54]  Steinbach,et al.  Modeling Human Blockers in Millimeter Wave Radio Links , 2012 .

[55]  Dajana Cassioli,et al.  Millimeter waves channel measurements and path loss models , 2012, 2012 IEEE International Conference on Communications (ICC).

[56]  Mérouane Debbah,et al.  Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need? , 2013, IEEE Journal on Selected Areas in Communications.

[57]  Theodore S. Rappaport,et al.  Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models , 2017, IEEE Transactions on Antennas and Propagation.

[58]  Theodore S. Rappaport,et al.  Exploiting directionality for millimeter-wave wireless system improvement , 2015, 2015 IEEE International Conference on Communications (ICC).

[59]  Mohd Fadzil Ain,et al.  Rain attenuation model for south east asia countries , 2007 .

[60]  Xiaojing Huang,et al.  A hybrid adaptive antenna array , 2010, IEEE Transactions on Wireless Communications.

[61]  Thomas Zwick,et al.  A stochastic multipath channel model including path directions for indoor environments , 2002, IEEE J. Sel. Areas Commun..

[62]  Ghaïs El Zein,et al.  Spatial Characterization of 60 GHz Indoor Channels by Fast Gaussian Beam Tracking Method and Comparison with Measurements , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[63]  P. Vainikainen,et al.  Propagation characterization of wideband indoor radio channels at 60 GHz , 2005, 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications.

[64]  Lars Thiele,et al.  QuaDRiGa: A 3-D Multi-Cell Channel Model With Time Evolution for Enabling Virtual Field Trials , 2014, IEEE Transactions on Antennas and Propagation.

[65]  Theodore S. Rappaport,et al.  Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design , 2015, IEEE Transactions on Communications.

[66]  Theodore S. Rappaport,et al.  In-building wideband partition loss measurements at 2.5 and 60 GHz , 2004, IEEE Transactions on Wireless Communications.

[67]  Philip Constantinou,et al.  Indoor channel modeling at 60 GHz for wireless LAN applications , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[68]  Baharudin Yatim,et al.  Modified ITU-R rain attenuation model for equatorial climate , 2011, Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace).

[69]  Lajos Hanzo,et al.  Third-generation systems and intelligent wireless networking , 2002 .

[70]  J. Kunisch,et al.  MEDIAN 60 GHz wideband indoor radio channel measurements and model , 1999, Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324).

[71]  K. Borner,et al.  Channel modelling for the fifth generation mobile communications , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[72]  Theodore S. Rappaport,et al.  28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city , 2013, 2013 IEEE International Conference on Communications (ICC).

[73]  Xiongwen Zhao,et al.  Channel Measurements, Modeling, Simulation and Validation at 32 GHz in Outdoor Microcells for 5G Radio Systems , 2017, IEEE Access.

[74]  Ke Wu,et al.  Periodic SIW Leaky-Wave Antenna With Large Circularly Polarized Beam Scanning Range , 2017, IEEE Antennas and Wireless Propagation Letters.

[75]  Theodore S. Rappaport,et al.  Proposal on Millimeter-Wave Channel Modeling for 5G Cellular System , 2016, IEEE Journal of Selected Topics in Signal Processing.

[76]  J. C. Wiltse,et al.  System Considerations for Millimeter Wave Satellite Communications , 1966, IEEE Transactions on Aerospace and Electronic Systems.

[77]  Geoffrey Hilton,et al.  Impact of diffraction and attenuation for material characterisation in millimetre wave bands , 2015, 2015 Loughborough Antennas & Propagation Conference (LAPC).

[78]  Theodore S. Rappaport,et al.  The human body and millimeter-wave wireless communication systems: Interactions and implications , 2015, 2015 IEEE International Conference on Communications (ICC).

[79]  Chen-Nee Chuah,et al.  Capacity of multi-antenna array systems in indoor wireless environment , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[80]  Christophe Loyez,et al.  Path‐loss model of the 60‐GHz indoor radio channel , 2002 .

[81]  William C. Y. Lee Integrated Wireless Propagation Models , 2014 .

[82]  Li Tian,et al.  45GHz propagation channel modeling for an indoor conference scenario , 2015, 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[83]  Zhouyue Pi,et al.  A millimeter-wave massive MIMO system for next generation mobile broadband , 2012, 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[84]  J.R. Costa,et al.  Compact Beam-Steerable Lens Antenna for 60-GHz Wireless Communications , 2009, IEEE Transactions on Antennas and Propagation.

[85]  Theodore S. Rappaport,et al.  Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks , 2014, IEEE Journal on Selected Areas in Communications.

[86]  Mary Ann Ingram,et al.  Spherical-wave model for short-range MIMO , 2005, IEEE Transactions on Communications.

[87]  Mohamed El-Tanany,et al.  Millimeter-wave channel measurements with space diversity for indoor wireless communications , 1995 .

[88]  Buford Randall Jean,et al.  Antenna Effects in Depolarization Measurements , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[89]  Theodore S. Rappaport,et al.  Consumption factor: A figure of merit for power consumption and energy efficiency in broadband wireless communications , 2011, 2011 IEEE GLOBECOM Workshops (GC Wkshps).

[90]  Theodore S. Rappaport,et al.  Local multipath model parameters for generating 5G millimeter-wave 3GPP-like channel impulse response , 2015, 2016 10th European Conference on Antennas and Propagation (EuCAP).

[91]  Shajahan Kutty,et al.  Beamforming for Millimeter Wave Communications: An Inclusive Survey , 2016, IEEE Communications Surveys & Tutorials.

[92]  Yongbin Wei,et al.  A survey on 3GPP heterogeneous networks , 2011, IEEE Wireless Communications.

[93]  S.M. Ali,et al.  Deterministic and Statistical-Based Channel Models in the MIMO Link Evaluation , 2009, IEEE Antennas and Wireless Propagation Letters.

[94]  Farooq Khan,et al.  System design and network architecture for a millimeter-wave mobile broadband (MMB) system , 2011, 34th IEEE Sarnoff Symposium.

[95]  Theodore S. Rappaport,et al.  State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications , 2011, Proceedings of the IEEE.

[96]  Theodore S. Rappaport,et al.  Statistical Channel Model with Multi-Frequency and Arbitrary Antenna Beamwidth for Millimeter-Wave Outdoor Communications , 2015, 2015 IEEE Globecom Workshops (GC Wkshps).

[97]  P. Russer Si and SiGe millimeter-wave integrated circuits , 1998 .

[98]  Xuanli Wu,et al.  Joint User Grouping and Resource Allocation for Multi-User Dual Layer Beamforming in LTE-A , 2015, IEEE Communications Letters.

[99]  Chia-Chin Chong,et al.  An Overview of Multigigabit Wireless through Millimeter Wave Technology: Potentials and Technical Challenges , 2007, EURASIP J. Wirel. Commun. Netw..

[100]  James F. Buckwalter,et al.  Series power combining: Enabling techniques for Si/SiGe millimeter-wave power amplifiers , 2016, 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF).

[101]  Y. S. Meng,et al.  INVESTIGATIONS OF FOLIAGE EFFECT ON MODERN WIRELESS COMMUNICATION SYSTEMS: A REVIEW , 2010 .

[102]  Robert W. Heath,et al.  An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems , 2015, IEEE Journal of Selected Topics in Signal Processing.

[103]  A.A.M. Saleh,et al.  A Statistical Model for Indoor Multipath Propagation , 1987, IEEE J. Sel. Areas Commun..

[104]  Robert W. Heath,et al.  Hybrid precoding for millimeter wave cellular systems with partial channel knowledge , 2013, 2013 Information Theory and Applications Workshop (ITA).

[105]  Kamran Sayrafian-Pour,et al.  Comparison of Ray Tracing Simulations and Millimeter Wave Channel Sounding Measurements , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.

[106]  Alexey Sevastyanov,et al.  Characteristics of indoor millimeter-wave channel at 60 GHz in application to perspective WLAN system , 2010, EuCAP 2010.

[107]  Lajos Hanzo,et al.  Advanced Space-Time Coding: Near-Capacity Sphere-Packing, Multi-Functional MIMOs and Cooperative Space-Time Processing , 2008 .

[108]  H.T. Friis,et al.  A Note on a Simple Transmission Formula , 1946, Proceedings of the IRE.

[109]  Theodore S. Rappaport,et al.  Cellular broadband millimeter wave propagation and angle of arrival for adaptive beam steering systems (invited paper) , 2012, 2012 IEEE Radio and Wireless Symposium.

[110]  Theodore S. Rappaport,et al.  MIMO channel modeling and capacity analysis for 5G millimeter-wave wireless systems , 2015, 2016 10th European Conference on Antennas and Propagation (EuCAP).

[111]  T. Manabe,et al.  Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band , 1997 .

[112]  Joseph M. Kahn,et al.  Fading correlation and its effect on the capacity of multi-element antenna systems , 1998, ICUPC '98. IEEE 1998 International Conference on Universal Personal Communications. Conference Proceedings (Cat. No.98TH8384).

[113]  Theodore S. Rappaport,et al.  Measurements and models for 38-GHz point-to-multipoint radiowave propagation , 2000, IEEE Journal on Selected Areas in Communications.

[114]  Robert W. Heath,et al.  Millimeter wave cellular channel models for system evaluation , 2014, 2014 International Conference on Computing, Networking and Communications (ICNC).

[115]  William Gosling Radio antennas and propagation , 1998 .

[116]  Yves Louët,et al.  Comparison of measurements and simulations in indoor environments for wireless local networks at 60 GHz , 2002, Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367).

[117]  Michael Yan Wah Chia,et al.  Propagation measurements and modeling of LMDS radio channel in Singapore , 2003, IEEE Trans. Veh. Technol..

[118]  Theodore S. Rappaport,et al.  Path loss models for 5G millimeter wave propagation channels in urban microcells , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[119]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[120]  Oliver Stabler,et al.  Comparison of MIMO Channel Characteristics Computed by 3D Ray Tracing and Statistical Models , 2007 .

[121]  Theodore S. Rappaport,et al.  A 38 GHz cellular outage study for an urban outdoor campus environment , 2012, 2012 IEEE Wireless Communications and Networking Conference (WCNC).

[122]  Theodore S. Rappaport,et al.  Safe for Generations to Come: Considerations of Safety for Millimeter Waves in Wireless Communications , 2015, IEEE Microwave Magazine.

[123]  Fredrik Tufvesson,et al.  5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice , 2017, IEEE Journal on Selected Areas in Communications.

[124]  Krystian Safjan,et al.  Architectural aspects of mm-wave radio access integration with 5G ecosystem , 2016 .

[125]  Theodore S. Rappaport,et al.  28 GHz Angle of Arrival and Angle of Departure Analysis for Outdoor Cellular Communications Using Steerable Beam Antennas in New York City , 2013, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).

[126]  Theodore S. Rappaport,et al.  Synthesizing Omnidirectional Antenna Patterns, Received Power and Path Loss from Directional Antennas for 5G Millimeter-Wave Communications , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[127]  Phil Pietraski,et al.  Millimeter Wave and Terahertz Communications: Feasibility and Challenges , 2012 .

[128]  Theodore S. Rappaport,et al.  Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks , 2015, IEEE Access.

[129]  C.W. Bostian,et al.  Measurements of 28 GHz diffraction loss by building corners , 1998, Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Cat. No.98TH8361).

[130]  Amir Ahmad Shishegar,et al.  Efficient shooting and bouncing ray tracing using decomposition of wavefronts , 2010 .

[131]  Theodore S. Rappaport,et al.  A Flexible Millimeter-Wave Channel Sounder With Absolute Timing , 2017, IEEE Journal on Selected Areas in Communications.

[132]  Kei Sakaguchi,et al.  Outdoor millimeter-wave access for heterogeneous networks — Path loss and system performance , 2014, 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC).

[133]  A. Mohammadi,et al.  Indoor propagation MIMO channel modeling in 60 GHz using SBR based 3D ray tracing technique , 2012, 2012 Second Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT).

[134]  Zhouyue Pi,et al.  An introduction to millimeter-wave mobile broadband systems , 2011, IEEE Communications Magazine.

[135]  Lajos Hanzo,et al.  Layered steered space-time codes using multi-dimensional sphere packing modulation , 2009, IEEE Transactions on Wireless Communications.

[136]  Kyungwhoon Cheun,et al.  Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results , 2014, IEEE Communications Magazine.

[137]  Theodore S. Rappaport,et al.  Joint Spatial Division and Multiplexing for mm-Wave Channels , 2013, IEEE Journal on Selected Areas in Communications.

[138]  K. Button,et al.  Infrared and Millimeter Waves , 1983 .

[139]  Theodore S. Rappaport,et al.  Short-Range Wireless Communications for Next-Generation Networks: UWB, 60 GHz Millimeter-Wave WPAN, And ZigBee , 2007, IEEE Wireless Communications.

[140]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[141]  Lajos Hanzo,et al.  Reduced-RF-Chain Aided Soft-Decision Multi-Set Steered Space-Time Shift-Keying for Millimeter-Wave Communications , 2017, IEEE Access.

[142]  Sridhar Rajagopal,et al.  Antenna Array Design for Multi-Gbps mmWave Mobile Broadband Communication , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[143]  M. Rodwell,et al.  Millimeter-wave MIMO : Wireless Links at Optical Speeds , 2006 .

[144]  Lajos Hanzo,et al.  Single- and Multi-Carrier DS-CDMA: Multi-USer Detection, Space-Time Spreading, Synchronisation, Standards and Networking , 2003 .

[145]  Lajos Hanzo,et al.  Multi-Set Space-Time Shift Keying and Space- Frequency Space-Time Shift Keying for Millimeter-Wave Communications , 2017, IEEE Access.

[146]  LaRue A. Hoffman,et al.  A 94-GHz RADAR for Space Object Identification , 1969 .

[147]  Theodore S. Rappaport,et al.  Spatial and temporal characterization of 60 GHz indoor channels , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[148]  Ondrej Fiser,et al.  Frequency and path length scaling of rain attenuation from 38 GHz, 58 GHz and 93 GHz data obtained on terrestrial paths , 2009, 2009 3rd European Conference on Antennas and Propagation.

[149]  G. E. Zein,et al.  Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel , 2004, IEEE Transactions on Wireless Communications.

[150]  David Falconer,et al.  Frequency domain equalization for single-carrier broadband wireless systems , 2002, IEEE Commun. Mag..

[151]  Theodore S. Rappaport,et al.  Millimeter wave multi-beam antenna combining for 5G cellular link improvement in New York City , 2014, 2014 IEEE International Conference on Communications (ICC).

[152]  Hiroshi Harada,et al.  Impulse Response Model and Parameters for Indoor Channel Modeling at 60GHz , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[153]  Michael A. Jensen,et al.  Modeling the indoor MIMO wireless channel , 2002 .

[154]  G.A.J. van Dooren,et al.  Measurement of diffracted electromagnetic fields behind a thin finite-width screen , 1992 .

[155]  Theodore S. Rappaport,et al.  73 GHz wideband millimeter-wave foliage and ground reflection measurements and models , 2015, 2015 IEEE International Conference on Communication Workshop (ICCW).

[156]  Holger H. Meinel System Design, Applications and Development Trends in the Millimeter-Wave Range , 1988, 1988 18th European Microwave Conference.

[157]  Xiongwen Zhao,et al.  Millimeter-Wave Propagation Channel Characterization for Short-Range Wireless Communications , 2009, IEEE Transactions on Vehicular Technology.

[158]  Dajana Cassioli UWB Moves up to mmWaves: A channel modeling perspective , 2011, 2011 IEEE International Conference on Ultra-Wideband (ICUWB).

[159]  H. Bertoni,et al.  A theoretical model of UHF propagation in urban environments , 1988 .

[160]  R. J. Davies,et al.  Propagation considerations for the design of an indoor broad-band communications system at EHF , 1998 .

[161]  Y. Takimoto Recent activities on millimeter wave indoor LAN system development in Japan , 1995, IEEE NTC,Conference Proceedings Microwave Systems Conference.

[162]  Lajos Hanzo,et al.  Layered Multi-Group Steered Space-Time Shift-Keying for Millimeter-Wave Communications , 2016, IEEE Access.

[163]  Kate A. Remley,et al.  Analysis of E-Band Path Loss and Propagation Mechanisms in the Indoor Environment , 2017, IEEE Transactions on Antennas and Propagation.

[164]  Laurent Clavier,et al.  Statistical channel model based on α-stable random processes and application to the 60 GHz ultra wide band channel , 2010, IEEE Transactions on Communications.

[165]  W. D. Rummler,et al.  Time- and frequency-domain representation of multipath fading on line-of-sight microwave paths , 1980, The Bell System Technical Journal.

[166]  Theodore S. Rappaport,et al.  28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city , 2013, 2013 IEEE International Conference on Communications (ICC).

[167]  Robert W. Heath,et al.  Spatially Sparse Precoding in Millimeter Wave MIMO Systems , 2013, IEEE Transactions on Wireless Communications.

[168]  Andreas F. Molisch,et al.  Statistical characterization of urban spatial radio channels , 2002, IEEE J. Sel. Areas Commun..

[169]  K. Sarabandi,et al.  Millimeter-wave measurements of foliage attenuation and ground reflectivity of tree stands at nadir incidence , 2004, IEEE Transactions on Antennas and Propagation.

[170]  K. Sarabandi,et al.  An enhanced millimeter-wave foliage propagation model , 2005, IEEE Transactions on Antennas and Propagation.

[171]  Larbi Talbi,et al.  A coverage prediction technique for indoor wireless millimeter waves system , 1996, Wirel. Pers. Commun..

[172]  Katsuyuki Haneda,et al.  A Statistical Spatio-Temporal Radio Channel Model for Large Indoor Environments at 60 and 70 GHz , 2015, IEEE Transactions on Antennas and Propagation.

[173]  Yi Wang,et al.  5G 3GPP-Like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments , 2016, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).

[174]  Theodore S. Rappaport,et al.  38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications , 2012, 2012 IEEE International Conference on Communications (ICC).

[175]  Per Ligander,et al.  Long term path attenuation measurement of the 71–76 GHz band in a 70/80 GHz microwave link , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[176]  Theodore S. Rappaport,et al.  28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models , 2015, 2015 IEEE International Conference on Communication Workshop (ICCW).

[177]  Alister G. Burr,et al.  Survey of Channel and Radio Propagation Models for Wireless MIMO Systems , 2007, EURASIP J. Wirel. Commun. Netw..

[178]  Davide Dardari,et al.  Fast ray-tracing characterisation of indoor propagation channels at 60 GHz , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[179]  Upamanyu Madhow,et al.  Indoor Millimeter Wave MIMO: Feasibility and Performance , 2011, IEEE Transactions on Wireless Communications.

[180]  Theodore S. Rappaport,et al.  3-D Millimeter-Wave Statistical Channel Model for 5G Wireless System Design , 2016, IEEE Transactions on Microwave Theory and Techniques.

[181]  Alle-Jan van der Veen,et al.  Analog Beamforming in MIMO Communications With Phase Shift Networks and Online Channel Estimation , 2010, IEEE Transactions on Signal Processing.

[182]  M. Marcus,et al.  Millimeter wave propagation: spectrum management implications , 2005, IEEE Microwave Magazine.

[183]  P. Ioannides,et al.  Uniform circular and rectangular arrays for adaptive beamforming applications , 2005, IEEE Antennas and Wireless Propagation Letters.

[184]  E. Violette,et al.  Millimeter-wave propagation at street level in an urban environment , 1988 .

[185]  Theodore S. Rappaport,et al.  Millimeter-Wave Omnidirectional Path Loss Data for Small Cell 5G Channel Modeling , 2015, IEEE Access.

[186]  R.L. Hamilton,et al.  Ray tracing as a design tool for radio networks , 1991, IEEE Network.

[187]  Theodore S. Rappaport,et al.  28 GHz Millimeter-Wave Ultrawideband Small-Scale Fading Models in Wireless Channels , 2015, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).

[188]  Haibing Yang,et al.  Indoor Radio Channel Fading Analysis via Deterministic Simulations at 60 GHz , 2006, 2006 3rd International Symposium on Wireless Communication Systems.

[189]  Theodore S. Rappaport,et al.  A preliminary 3D mm wave indoor office channel model , 2015, 2015 International Conference on Computing, Networking and Communications (ICNC).

[190]  A. F. Elrefaie,et al.  Propagation measurements at 28 GHz for coverage evaluation of local multipoint distribution service , 1997, Proceedings of 1997 Wireless Communications Conference.

[191]  Peter F. M. Smulders,et al.  Statistical Characterization of 60-GHz Indoor Radio Channels , 2009, IEEE Transactions on Antennas and Propagation.

[192]  Theodore S. Rappaport,et al.  Indoor and Outdoor 5G Diffraction Measurements and Models at 10, 20, and 26 GHz , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[193]  Theodore S. Rappaport,et al.  3-D statistical channel model for millimeter-wave outdoor mobile broadband communications , 2015, 2015 IEEE International Conference on Communications (ICC).

[194]  Theodore S. Rappaport,et al.  Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges , 2014, Proceedings of the IEEE.

[195]  Gregory W. Wornell,et al.  Cooperative diversity in wireless networks: Efficient protocols and outage behavior , 2004, IEEE Transactions on Information Theory.

[196]  Ernst Bonek,et al.  A stochastic MIMO channel model with joint correlation of both link ends , 2006, IEEE Transactions on Wireless Communications.

[197]  Fredrik Tufvesson,et al.  On mm-Wave Multipath Clustering and Channel Modeling , 2014, IEEE Transactions on Antennas and Propagation.

[198]  A. Lee Swindlehurst,et al.  Millimeter-wave massive MIMO: the next wireless revolution? , 2014, IEEE Communications Magazine.

[199]  Theodore S. Rappaport,et al.  Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications , 2013, IEEE Transactions on Antennas and Propagation.

[200]  Gabriel M. Rebeiz,et al.  A Millimeter-Wave (40–45 GHz) 16-Element Phased-Array Transmitter in 0.18-$\mu$ m SiGe BiCMOS Technology , 2009, IEEE Journal of Solid-State Circuits.

[201]  Yang Li,et al.  3D channel model in 3GPP , 2015, IEEE Communications Magazine.

[202]  Pertti Vainikainen,et al.  Millimeter-Wave MIMO Radio Channel Sounder , 2007, IEEE Transactions on Instrumentation and Measurement.

[203]  Theodore S. Rappaport,et al.  72 GHz millimeter wave indoor measurements for wireless and backhaul communications , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[204]  Robert W. Heath,et al.  Antenna Subset Modulation for secure millimeter-wave wireless communication , 2013, 2013 IEEE Globecom Workshops (GC Wkshps).

[205]  M. Sánchez,et al.  Measurements and analysis of the indoor wideband millimeter wave wireless radio channel and frequency diversity characterization , 2003 .

[206]  Gert Brussaard,et al.  Characterisation of the 50-70 GHz band for space communications , 1983 .

[207]  Youngju Lee,et al.  Design and analysis of a low-profile 28 GHz beam steering antenna solution for Future 5G cellular applications , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[208]  André Bourdoux,et al.  Mixed Analog/Digital Beamforming for 60 GHz MIMO Frequency Selective Channels , 2010, 2010 IEEE International Conference on Communications.

[209]  Lajos Hanzo,et al.  Layered steered space-time codes and their capacity , 2007 .

[210]  R. King Electromagnetic waves and antennas above and below the surface of the earth , 1979 .

[211]  O. Edfors,et al.  A General Coupling-Based Model Framework for Wideband MIMO Channels , 2012, IEEE Transactions on Antennas and Propagation.

[212]  G. P. Kefalas,et al.  Millimeter-Wave Systems Applications , 1969 .

[213]  Michele Zorzi,et al.  Bit allocation for increased power efficiency in 5G receivers with variable-resolution ADCs , 2016, 2017 Information Theory and Applications Workshop (ITA).

[214]  G. Kadel,et al.  Measurement and analysis of wide band indoor propagation characteristics at 17 GHz and 60 GHz , 1995 .

[215]  Marco Luise,et al.  Mobile and Personal Communications in the 60 GHz Band: A Survey , 1999, Wirel. Pers. Commun..

[216]  Mohammed El-Hajjar,et al.  Millimeter-Wave Transmission for Small-Cell Backhaul in Dense Urban Environment: a Solution Based on MIMO-OFDM and Space-Time Shift Keying (STSK) , 2017, IEEE Access.

[217]  Robert W Heath,et al.  60 GHz Wireless: Up Close and Personal , 2010, IEEE Microwave Magazine.

[218]  Iigo Cuias,et al.  Modeling and measuring depolarization by building obstacles in the 41.5 GHz band , 2000 .