Triple-SGM: Stereo Processing using Semi-Global Matching with Cost Fusion

In this work, we propose an extension of the Semi-Global Matching framework for three images from a triplet-stereo rig consisting of a horizontal and vertical camera pair. After calculating the matching costs separately for both image pairs, these are merged at cost level using cubic spline interpolation. For cost values near the left/bottom image boundaries, we propose an advanced weighting strategy. Subsequently, the fused matching can be used directly for the cost aggregation and disparity estimation.The benefits of the proposed fusion strategy are demonstrated by an evaluation based on synthetic and real-world data. To encourage further comparisons on triple stereo algorithms, the dataset used for evaluation is made publicly available.

[1]  Germán Ros,et al.  CARLA: An Open Urban Driving Simulator , 2017, CoRL.

[2]  Volkan Isler,et al.  Trinocular Stereo: A Real-Time Algorithm and its Evaluation , 2004, International Journal of Computer Vision.

[3]  Johannes Stallkamp,et al.  Real-time stereo vision: Optimizing Semi-Global Matching , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[4]  Ines Ernst,et al.  Mutual Information Based Semi-Global Stereo Matching on the GPU , 2008, ISVC.

[5]  Hans-Joachim Wünsche,et al.  Effective Combination of Vertical and Horizontal Stereo Vision , 2018, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[6]  Antonio M. López,et al.  Embedded Real-time Stereo Estimation via Semi-Global Matching on the GPU , 2016, ICCS.

[7]  Yunde Jia,et al.  An efficient rectification method for trinocular stereovision , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[8]  Liang Wang,et al.  A Deep Visual Correspondence Embedding Model for Stereo Matching Costs , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[9]  Marc Pollefeys,et al.  SGM-Nets: Semi-Global Matching with Neural Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[11]  Peter Pirsch,et al.  Evaluation of Penalty Functions for Semi-Global Matching Cost Aggregation , 2012 .

[12]  Minh N. Do,et al.  Symmetric multi-view stereo reconstruction from planar camera arrays , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Peter Pirsch,et al.  Real-time semi-global matching disparity estimation on the GPU , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[14]  Yann LeCun,et al.  Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches , 2015, J. Mach. Learn. Res..

[15]  Joachim Weickert,et al.  Why Is the Census Transform Good for Robust Optic Flow Computation? , 2013, SSVM.

[16]  Xi Wang,et al.  High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth , 2014, GCPR.

[17]  Heiko Hirschmüller,et al.  Semi-Global Matching-Motivation, Developments and Applications , 2011 .

[18]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[19]  V. Rodehorst,et al.  EFFICIENT SEMI-GLOBAL MATCHING FOR TRINOCULAR STEREO , 2007 .

[20]  Jonghyun Choi,et al.  An Efficient Trinocular Rectification Method for Stereo Vision , 2007 .

[21]  Stefan K. Gehrig,et al.  A Real-Time Low-Power Stereo Vision Engine Using Semi-Global Matching , 2009, ICVS.

[22]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[23]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.

[24]  Sergiu Nedevschi,et al.  GPU optimization of the SGM stereo algorithm , 2010, Proceedings of the 2010 IEEE 6th International Conference on Intelligent Computer Communication and Processing.