The protein kinase Mζ network as a bistable switch to store neuronal memory

[1]  D. Storm,et al.  The role of calmodulin as a signal integrator for synaptic plasticity , 2005, Nature Reviews Neuroscience.

[2]  T. Sacktor,et al.  Protein synthesis-dependent formation of protein kinase Mzeta in long- term potentiation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Tobias Bonhoeffer,et al.  Neuronal activity determines the protein synthesis dependence of long-term potentiation , 2006, Nature Neuroscience.

[4]  Todd Charlton Sacktor,et al.  Persistent Phosphorylation by Protein Kinase Mζ Maintains Late-Phase Long-Term Potentiation , 2005, The Journal of Neuroscience.

[5]  M. Kawato,et al.  Ca2+ Requirements for Cerebellar Long-Term Synaptic Depression: Role for a Postsynaptic Leaky Integrator , 2007, Neuron.

[6]  M. Ito,et al.  Cerebellar long-term depression: characterization, signal transduction, and functional roles. , 2001, Physiological reviews.

[7]  J. Lisman A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Venkatesh N. Murthy,et al.  Rapid turnover of actin in dendritic spines and its regulation by activity , 2002, Nature Neuroscience.

[9]  F. Crick Neurobiology: Memory and molecular turnover , 1984, Nature.

[10]  M. Kawato,et al.  Computational Models of Cerebellar Long-Term Memory , 2009 .

[11]  S. Jager,et al.  Rapid Erasure of Long-Term Memory Associations in the Cortex by an Inhibitor of PKM z , 2009 .

[12]  Y. Arshavsky Long-term memory: does it have a structural or chemical basis? , 2003, Trends in Neurosciences.

[13]  Karim Nader,et al.  PKMζ maintains memories by regulating GluR2-dependent AMPA receptor trafficking , 2010, Nature Neuroscience.

[14]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[15]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[16]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[17]  Yue Zhang,et al.  Regulation of Cell Polarity and Protrusion Formation by Targeting RhoA for Degradation , 2003, Science.

[18]  P. Serrano,et al.  PKMζ Maintains Late Long-Term Potentiation by N-Ethylmaleimide-Sensitive Factor/GluR2-Dependent Trafficking of Postsynaptic AMPA Receptors , 2008, The Journal of Neuroscience.

[19]  H. Kasai,et al.  Structure–stability–function relationships of dendritic spines , 2003, Trends in Neurosciences.

[20]  Willie F. Tobin,et al.  Rapid formation and selective stabilization of synapses for enduring motor memories , 2009, Nature.

[21]  J. Slevin,et al.  Cellular functions of NSF: Not just SNAPs and SNAREs , 2007, FEBS letters.

[22]  J. Lacaille PKM z , LTP maintenance , and the dynamic molecular biology of memory storage , 2008 .

[23]  S. Sara Retrieval and reconsolidation: toward a neurobiology of remembering. , 2000, Learning & memory.

[24]  André A Fenton,et al.  PKMζ Maintains Spatial, Instrumental, and Classically Conditioned Long-Term Memories , 2008, PLoS biology.

[25]  A. Puls,et al.  Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Wotjak,et al.  Time course and efficiency of protein synthesis inhibition following intracerebral and systemic anisomycin treatment , 2008, Neurobiology of Learning and Memory.

[27]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[28]  John F. Crary,et al.  Protein kinase Mζ is necessary and sufficient for LTP maintenance , 2002, Nature Neuroscience.

[29]  J E Ferrell,et al.  The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. , 1998, Science.

[30]  C. Hoogenraad,et al.  Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity , 2009, Neuron.

[31]  A. Rebollo,et al.  Physical association and functional relationship between protein kinase Cζ and the actin cytoskeleton , 1995, European journal of immunology.

[32]  J. A. Le Good,et al.  Molecular mechanisms regulating protein kinase Czeta turnover and cellular transformation. , 2004, The Biochemical journal.

[33]  G. Eichele,et al.  Differential expression of atypical PKCs in the adult mouse brain. , 2004, Brain research. Molecular brain research.

[34]  M. Kawato,et al.  Inositol 1,4,5-Trisphosphate-Dependent Ca2+ Threshold Dynamics Detect Spike Timing in Cerebellar Purkinje Cells , 2005, The Journal of Neuroscience.

[35]  H. Shouval,et al.  Translational switch for long-term maintenance of synaptic plasticity , 2009, Molecular systems biology.

[36]  M. Kawato,et al.  Bistable Switches for Synaptic Plasticity , 2009, Science Signaling.

[37]  J E Ferrell,et al.  Building a cellular switch: more lessons from a good egg. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[38]  C. Hansel When the B-team runs plasticity: GluR2 receptor trafficking in cerebellar long-term potentiation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  John F. Crary,et al.  Regulation of Protein Kinase Mζ Synthesis by Multiple Kinases in Long-Term Potentiation , 2007, The Journal of Neuroscience.

[40]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[41]  T. Sacktor,et al.  Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Johnston,et al.  N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Augustine,et al.  A Positive Feedback Signal Transduction Loop Determines Timing of Cerebellar Long-Term Depression , 2008, Neuron.

[44]  A. Penn,et al.  Molecular determinants of AMPA receptor subunit assembly , 2007, Trends in Neurosciences.

[45]  JaneR . Taylor,et al.  Molecular mechanisms of memory reconsolidation , 2007, Nature Reviews Neuroscience.

[46]  S. Halpain,et al.  Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  T. Sacktor PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage. , 2008, Progress in brain research.

[48]  M. Perricaudet,et al.  An adenovirus vector for gene transfer into neurons and glia in the brain , 1993, Science.

[49]  Todd Charlton Sacktor,et al.  Dendritic transport and localization of protein kinase Mzeta mRNA: implications for molecular memory consolidation. , 2004, The Journal of biological chemistry.

[50]  Jonathan R. Whitlock,et al.  Learning Induces Long-Term Potentiation in the Hippocampus , 2006, Science.

[51]  O. Hardt,et al.  A single standard for memory: the case for reconsolidation , 2009, Nature Reviews Neuroscience.

[52]  Ji Yu,et al.  Investigating Sub-Spine Actin Dynamics in Rat Hippocampal Neurons with Super-Resolution Optical Imaging , 2009, PloS one.

[53]  Upinder S. Bhalla,et al.  Signaling Logic of Activity-Triggered Dendritic Protein Synthesis: An mTOR Gate But Not a Feedback Switch , 2009, PLoS Comput. Biol..

[54]  Mitsuo Kawato,et al.  Systems Biology Perspectives on Cerebellar Long-Term Depression , 2008, Neurosignals.

[55]  Xiao-Jing Wang,et al.  The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover , 2005, PLoS biology.

[56]  T. Soderling,et al.  Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways , 2010, Current Opinion in Neurobiology.

[57]  J. Kotaleski,et al.  Subcellular interactions between parallel fibre and climbing fibre signals in purkinje cells predict sensitivity of classical conditioning to interstimulus interval , 2002, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[58]  K. Weber,et al.  Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Deutscher,et al.  Efficient Mammalian Protein Synthesis Requires an Intact F-Actin System* , 1997, The Journal of Biological Chemistry.

[60]  F. Crick Memory and molecular turnover. , 1984, Nature.

[61]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[62]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[63]  Joseph E LeDoux,et al.  Cellular and Systems Reconsolidation in the Hippocampus , 2002, Neuron.

[64]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  M. Segal Dendritic spines and long-term plasticity , 2005, Nature Reviews Neuroscience.

[66]  G. Collingridge,et al.  Role of Ca2+ Stores in Metabotropicl-Glutamate Receptor-Mediated Supralinear Ca2+Signaling in Rat Hippocampal Neurons , 2000, The Journal of Neuroscience.

[67]  M. Kawato,et al.  The protein kinase Mζ network as a bistable switch to store neuronal memory , 2010, Neuroscience Research.

[68]  D. Zhelev,et al.  Chemoattractant receptor-stimulated F-actin polymerization in the human neutrophil is signaled by 2 distinct pathways. , 2003, Blood.

[69]  Robert M Sears,et al.  Local gene knockdown in the brain using viral-mediated RNA interference , 2003, Nature Medicine.

[70]  T. Abel,et al.  The role of protein synthesis in memory consolidation: Progress amid decades of debate , 2008, Neurobiology of Learning and Memory.

[71]  C. Koch,et al.  The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. , 1987, Science.

[72]  N. Spruston,et al.  Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity , 2005, Nature Neuroscience.

[73]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[74]  T. Teyler Long-term potentiation and memory. , 1987, International journal of neurology.

[75]  Chris I. De Zeeuw,et al.  αCaMKII Is Essential for Cerebellar LTD and Motor Learning , 2006, Neuron.

[76]  M. Kawato,et al.  Exploration of Signal Transduction Pathways in Cerebellar Long-Term Depression by Kinetic Simulation , 2001, The Journal of Neuroscience.

[77]  T. Sacktor,et al.  Protein kinase Mζ enhances excitatory synaptic transmission by increasing the number of active postsynaptic AMPA receptors , 2006, Hippocampus.

[78]  J. Tyson,et al.  Computational Cell Biology , 2010 .

[79]  Todd Charlton Sacktor,et al.  Actin polymerization regulates the synthesis of PKMζ in LTP , 2007, Neuropharmacology.