Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model

Abstract In this paper, a novel multi-loop nonlinear internal model control (IMC) strategy for multiple-input multiple-output (MIMO) systems is presented under the partial least squares (PLS) framework, which automatically decomposes the system into several univariate subsystems in the latent space. To formulate a nonlinear dynamic PLS framework, we propose an ARX-neural network (ARX-NN) cascaded structure, and incorporate it into PLS inner model. A gradient-based optimization approach is then provided to identify the parameter sets of the ARX-NN PLS model so that the plant-model mismatch is minimized. Furthermore, with perfect model, we show that the response of the closed loop system can be reduced to a simple linear IMC filter with the original system delay. The simulation results of a methylcyclohexane (MCH) distillation column from Aspen Dynamic Module, demonstrate the effectiveness of our approach in terms of disturbance rejection and tracking performance.

[1]  Junghui Chen,et al.  PLS data-driven based approach to design of a simulated moving bed process , 2009 .

[2]  Bin Hu,et al.  Multi-loop Internal Model Controller Design Based on a Dynamic PLS Framework , 2010 .

[3]  Thomas J. McAvoy,et al.  Nonlinear FIR Modeling via a Neural Net PLS Approach , 1996 .

[4]  S. Wold,et al.  Nonlinear PLS modeling , 1989 .

[5]  Dale E. Seborg,et al.  Nonlinear internal model control strategy for neural network models , 1992 .

[6]  Carlos E. Garcia,et al.  Internal model control. A unifying review and some new results , 1982 .

[7]  Agnar Höskuldsson,et al.  Non-linear PLS approach in score surface , 2009 .

[8]  Martin T. Hagan,et al.  Neural network design , 1995 .

[9]  G. Irwin,et al.  Nonlinear internal model control using local model networks , 1997 .

[10]  Junghui Chen,et al.  PLS based dEWMA run-to-run controller for MIMO non-squared semiconductor processes , 2007 .

[11]  Jun Liang,et al.  Multi-loop adaptive internal model control based on a dynamic partial least squares model , 2011 .

[12]  B. Bequette Nonlinear control of chemical processes: a review , 1991 .

[13]  Armando B. Corripio,et al.  Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes , 2003, Comput. Chem. Eng..

[14]  John F. MacGregor,et al.  Iterative Learning Control for Final Batch Product Quality Using Partial Least Squares Models , 2005 .

[15]  Daniel Sbarbaro,et al.  Neural Networks for Nonlinear Internal Model Control , 1991 .

[16]  W. Harmon Ray,et al.  Chemometric methods for process monitoring and high‐performance controller design , 1992 .

[17]  Jie Zhang,et al.  Nonlinear projection to latent structures method and its applications , 2006 .

[18]  Thomas J. McAvoy,et al.  Nonlinear PLS Modeling Using Neural Networks , 1992 .

[19]  S. Qin Recursive PLS algorithms for adaptive data modeling , 1998 .

[20]  M. A. Henson,et al.  An internal model control strategy for nonlinear systems , 1991 .

[21]  M. Morari,et al.  Internal model control. VI: Extension to nonlinear systems , 1986 .

[22]  Sirish L. Shah,et al.  Modeling and control of multivariable processes: Dynamic PLS approach , 1997 .

[23]  Léon Personnaz,et al.  Nonlinear internal model control using neural networks: application to processes with delay and design issues , 2000, IEEE Trans. Neural Networks Learn. Syst..

[24]  Jun Liang,et al.  Multiloop nonlinear IMC strategy design under PLS framework using ARX-neural network model , 2010, 2010 8th World Congress on Intelligent Control and Automation.

[25]  Junghui Chen,et al.  Batch-to-batch iterative learning control and within-batch on-line control for end-point qualities using MPLS-based dEWMA , 2008 .

[26]  Sirish L. Shah,et al.  Constrained nonlinear MPC using hammerstein and wiener models: PLS framework , 1998 .

[27]  G. Lim,et al.  A nonlinear partial least squares algorithm using quadratic fuzzy inference system , 2009 .

[28]  M. Morari,et al.  Internal Model Control: extension to nonlinear system , 1986 .

[29]  Junghui Chen,et al.  Applying Partial Least Squares Based Decomposition Structure to Multiloop Adaptive Proportional-Integral-Derivative Controllers in Nonlinear Processes , 2004 .

[30]  Ahmet Palazoglu,et al.  Orthogonal nonlinear partial least-squares regression , 2003 .

[31]  A. J. Morris,et al.  Non-linear dynamic projection to latent structures modelling , 2000 .