Factor augmented VAR revisited - A sparse dynamic factor model approach

We combine the factor augmented VAR framework with recently developed estimation and identification procedures for sparse dynamic factor models. Working with a sparse hierarchical prior distribution allows us to discriminate between zero and non-zero factor loadings. The non-zero loadings identify the unobserved factors and provide a meaningful economic interpretation for them. Applying our methodology to US macroeconomic data reveals indeed a high degree of sparsity in the data. We use the estimated FAVAR to study the effect of a monetary policy shock and a shock to the term premium. Factors and specific variables show sensible responses to the identified shocks.

[1]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[2]  J. Heckman,et al.  Bayesian Exploratory Factor Analysis , 2014, Journal of econometrics.

[3]  Joshua C. C. Chan,et al.  Efficient simulation and integrated likelihood estimation in state space models , 2009, Int. J. Math. Model. Numer. Optimisation.

[4]  André Kurmann,et al.  News Shocks and the Slope of the Term Structure of Interest Rates , 2010 .

[5]  C. Sims Interpreting the macroeconomic time series facts: The effects of monetary policy☆ , 1992 .

[6]  Per Krusell,et al.  News Shocks and Business Cycles , 2010 .

[7]  Christian Schumacher,et al.  Identifying relevant and irrelevant variables in sparse factor models , 2017 .

[8]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[9]  Hedibert Freitas Lopes,et al.  Parsimonious Bayesian Factor Analysis when the Number of Factors is Unknown , 2010 .

[10]  Clifford Lam,et al.  Factor modeling for high-dimensional time series: inference for the number of factors , 2012, 1206.0613.

[11]  Peng Wang,et al.  Identification theory for high dimensional static and dynamic factor models , 2014 .

[12]  Christian Schumacher,et al.  Bayesian estimation of sparse dynamic factor models with order-independent identification , 2013 .

[13]  Kunpeng Li,et al.  Estimation and Inference of FAVAR Models , 2014 .

[14]  Sylvia Frühwirth-Schnatter MCMC Estimation of Classical and Dynamic Switching and Mixture Models , 1998 .

[15]  Marco Lippi,et al.  Coincident and leading indicators for the Euro area , 2001 .

[16]  Mark W. Watson,et al.  Disentangling the Channels of the 2007-2009 Recession , 2012 .

[17]  Richard K. Crump,et al.  Pricing the Term Structure with Linear Regressions , 2013 .

[18]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[19]  M. Wand,et al.  Simple Marginally Noninformative Prior Distributions for Covariance Matrices , 2013 .

[20]  John G. Fernald A quarterly, utilization-adjusted series on total factor productivity , 2012 .

[21]  J. Geweke,et al.  Measuring the pricing error of the arbitrage pricing theory , 1996 .

[22]  Matthew West,et al.  Bayesian factor regression models in the''large p , 2003 .

[23]  Jean Boivin,et al.  Sticky Prices and Monetary Policy: Evidence from Disaggregated U.S. Data , 2007 .

[24]  Christian Aßmann,et al.  Bayesian analysis of static and dynamic factor models: An ex-post approach towards the rotation problem , 2016 .

[25]  C. Baumeister,et al.  Changes in the effects of monetary policy on disaggregate price dynamics , 2013 .

[26]  H. Uhlig Do Technology Shocks Lead to a Fall in Total Hours Worked , 2004 .

[27]  Vasja Sivec,et al.  Monetary, Fiscal and Oil Shocks: Evidence Based on Mixed Frequency Structural FAVARs , 2015 .

[28]  Serena Ng,et al.  Working Paper Series , 2019 .

[29]  Dimitris Korobilis Assessing the Transmission of Monetary Policy Using Time‐Varying Parameter Dynamic Factor Models , 2013 .

[30]  Rodney W. Strachan,et al.  Invariant Inference and Efficient Computation in the Static Factor Model , 2013 .

[31]  D. Romer,et al.  A New Measure of Monetary Shocks: Derivation and Implications , 2003 .

[32]  C. Schumacher,et al.  Finding Relevant Variables in Sparse Bayesian Factor Models: Economic Applications and Simulation Results , 2012, SSRN Electronic Journal.

[33]  David V. Pritchett Econometric policy evaluation: A critique , 1976 .

[34]  Jean Boivin,et al.  Série Scientifique Scientific Series 2013 s-11 Dynamic Effects of Credit Shocks in a Data-Rich Environment , 2013 .

[35]  J. Bai,et al.  Principal components estimation and identification of static factors , 2013 .

[36]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[37]  J. Galí,et al.  Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations , 1996 .

[38]  J. Bai,et al.  Forecasting economic time series using targeted predictors , 2008 .

[39]  M. West,et al.  High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics , 2008, Journal of the American Statistical Association.

[40]  Frederic S. Mishkin,et al.  How Has the Monetary Transmission Mechanism Evolved Over Time? , 2010 .

[41]  Herman Rubin,et al.  Statistical Inference in Factor Analysis , 1956 .

[42]  A. Basilevsky,et al.  Factor Analysis as a Statistical Method. , 1964 .

[43]  P. Giordani An Alternative Explanation of the Price Puzzle , 2001 .