Planck2015 results

This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

C. A. Oxborrow | R. B. Barreiro | J. Tuovinen | F. Pasian | L. Valenziano | H. Kurki-Suonio | P. Lilje | N. Aghanim | J. Bartlett | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | M. Frailis | A. Zacchei | S. Colombi | J. Lesgourgues | A. Melchiorri | V. Pettorino | P. McGehee | M. White | O. Forni | T. Ensslin | K. Gorski | E. Hivon | A. Banday | F. Hansen | M. Reinecke | M. Hobson | A. Lasenby | A. Lewis | A. Challinor | A. Lasenby | B. Wandelt | J. Dunkley | F. Bouchet | S. Matarrese | J. Bock | J. Borrill | P. Bernardis | A. Jaffe | C. Netterfield | R. Stompor | J. Bond | B. Crill | K. Ganga | W. Jones | S. Masi | F. Piacentini | S. Prunet | G. Efstathiou | M. Juvela | J. Diego | A. Moss | S. Mitra | S. White | A. Benoit-Lévy | R. Rebolo | A. Coulais | A. Gregorio | P. Christensen | M. Ashdown | C. Lawrence | S. Henrot-Versillé | B. Rusholme | G. Helou | E. Pierpaoli | R. Davis | T. Kisner | T. Jaffe | H. Eriksen | S. Plaszczynski | W. Reach | F. Boulanger | H. Nørgaard-Nielsen | R. Davies | C. Dickinson | J. Leahy | T. Pearson | P. Ade | M. Arnaud | J. Aumont | E. Battaner | A. Benoit | J. Bernard | M. Bersanelli | P. Bielewicz | A. Bonaldi | L. Bonavera | M. Bucher | C. Burigana | R. C. Butler | A. Catalano | A. Chamballu | R. Chary | H. Chiang | S. Church | D. Clements | L. Colombo | A. Curto | F. Cuttaia | L. Danese | A. Rosa | G. Zotti | J. Delabrouille | H. Dole | S. Donzelli | X. Dupac | F. Finelli | A. Fraisse | E. Franceschi | S. Galeotta | M. Giard | S. Gratton | A. Gruppuso | D. Hanson | D. Harrison | D. Herranz | S. Hildebrandt | W. Holmes | A. Hornstrup | W. Hovest | K. Huffenberger | E. Keihanen | R. Keskitalo | R. Kneissl | J. Knoche | L. Knox | G. Lagache | A. Lahteenmaki | J. Lamarre | R. Leonardi | M. Liguori | M. Linden-Vørnle | P. Lubin | D. Maino | N. Mandolesi | P. Martin | P. Mazzotta | P. Meinhold | L. Mendes | A. Mennella | M. Migliaccio | M. Miville-Deschênes | A. Moneti | L. Montier | D. Mortlock | D. Munshi | P. Naselsky | F. Nati | P. Natoli | F. Noviello | D. Novikov | I. Novikov | F. Paci | L. Pagano | F. Pajot | R. Paladini | D. Paoletti | B. Partridge | G. Patanchon | O. Perdereau | L. Perotto | F. Perrotta | M. Piat | D. Pietrobon | E. Pointecouteau | G. Polenta | L. Popa | G. Pratt | J. Puget | J. Rachen | M. Remazeilles | C. Renault | A. Renzi | I. Ristorcelli | G. Rocha | C. Rosset | G. Roudier | M. Rowan-Robinson | M. Sandri | D. Santos | G. Savini | D. Scott | M. Seiffert | E. Shellard | L. Spencer | R. Sudiwala | R. Sunyaev | D. Sutton | A. Suur-Uski | J. Sygnet | J. Tauber | L. Terenzi | L. Toffolatti | M. Tomasi | M. Tristram | M. Tucci | M. Turler | G. Umana | J. Valiviita | B. Tent | P. Vielva | F. Villa | L. Wade | I. Wehus | A. Wilkinson | D. Yvon | A. Zonca | F. Désert | E. Calabrese | K. Dolag | F. Elsner | S. Galli | E. Gjerløw | J. Gudmundsson | J. Hamann | M. Lattanzi | J. Melin | M. Millea | J. Murphy | M. Savelainen | V. Stolyarov | P. Serra | N. Bartolo | R. Battye | J. Cardoso | J. Chluba | C. Combet | E. D. Valentino | O. Doré | A. Ducout | M. Farhang | J. Fergusson | A. Frejsel | C. Gauthier | M. Gerbino | T. Ghosh | Y. Giraud-Héraud | E. Giusarma | J. González-Nuevo | C. Hernandez-Monteagudo | Z. Huang | G. Hurier | F. Levrier | M. López-Caniego | J. Macías-Pérez | G. Maggio | A. Mangilli | A. Marchini | M. Martinelli | E. Martinez-Gonzalez | G. Prezeau | M. Rossetti | B. R. d’Orfeuil | J. Rubiño-Martín | N. Said | V. Salvatelli | L. Salvati | M. Spinelli | T. Trombetti | J. Aumont | L. Montier | N. Mandolesi | G. Rocha | D. Novikov | M. Rowan-Robinson | S. Matarrese | A. Lewis | P. Christensen | E. Martínez-González | R. Sunyaev | O. Doré | C. Hernández-Monteagudo | J. Puget | K. Górski | F. Bouchet | R. Rebolo | K. Dolag | J. Bock | D. Scott | S. Hildebrandt | R. Sudiwala | P. Martin | S. Mitra | P. Christensen | E. Martinez-Gonzalez | M. Tristram | M. Piat | P. Bernardis | P. Mcgehee | D. Scott | S. White | M. Rowan‐Robinson | A. D. Rosa | J. Macı́as-Pérez | J. González-Nuevo | O. Doré | M. López-Caniego | S. Henrot-Versillé | K. Górski | S. D. M. White | A. Benoit-Lévy | F. Désert | J. Fergusson | Y. Giraud-Héraud | D. Santos | L. Toffolatti | P. Ade | J. Bock | S. Church | G. Rocha | J. G. Bartlett | J. Bernard | J. Cardoso | R. Davies | S. Gratton | L. Knox | G. Lagache | D. Novikov | I. Novikov | F. Perrotta | M. White | J. Murphy | J. Rubiño-Martín | D. Scott | F. Boulanger | M. Bucher | L. Colombo | A. Curto | R. J. Davis | J. M. Diego | J. Macı́as-Pérez | G. Maggio | M. Migliaccio | G. Prézeau | M. Reinecke | F. Villa | A. Zonca | R. Butler | J. Chluba | M. Farhang | M. Gerbino | B. Partridge | P. Serra | R. Davis | A. Bonaldi | A. Challinor | M. Kunz | D. Mortlock | J. A. Murphy | S. Plaszczynski | M. Rossetti | F. Pasian | R. Sunyaev | D. Clements | J. Bond | D. Harrison | C. Lawrence | L. Terenzi | P. Ade | Monique Arnaud | F. Finelli | G. Efstathiou | R. Davies | T. R. Jaffe | O. Forni | C. Rosset | A.-S. Suur-Uski | A. Curto | S. Mitra | S. White | M. Martinelli | M. Spinelli | S. Mitra | J. Macias-Perez | A. Lewis | R. Davies | Monique Arnaud | D. Hanson | R. Davies | R. Davies

[1]  N. Turok,et al.  Constraining Isocurvature Perturbations with CMB Polarisation , 1910 .

[2]  E. Teller,et al.  Metastability of Hydrogen and Helium Levels. , 1940 .

[3]  G. D. Liveing,et al.  The University of Cambridge , 1897, British medical journal.

[4]  J. Greenstein,et al.  Continuous Emission from Planetary Nebulae , 1951 .

[5]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[6]  Y. Zel’dovich,et al.  Recombination of hydrogen in the hot model of the universe , 1968 .

[7]  Y. Zeldovich,et al.  The interaction of matter and radiation in a hot-model universe , 1969 .

[8]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[9]  Y. Zeldovich,et al.  Small-scale fluctuations of relic radiation , 1970, Astrophysics and Space Science.

[10]  A. Oed,et al.  Measurement of the decay-probability of metastable hydrogen by two-photon emission , 1975 .

[11]  A. J. Duncan,et al.  The two-photon decay of metastable atomic hydrogen , 1975 .

[12]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[13]  F. Melchiorri,et al.  The Sunyaev-Zel'dovich effect in the millimetric region , 1978 .

[14]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.

[15]  Y. Rephaeli On the determination of the degree of cosmological Compton distortions and the temperature of the cosmic blackbody radiation , 1980 .

[16]  S. Coleman,et al.  Gravitational Effects on and of Vacuum Decay , 1980 .

[17]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[18]  J. Gott Creation of open universes from de Sitter space , 1982, Nature.

[19]  E. P. S. Shellard,et al.  Cosmic Strings and Other Topological Defects , 1995 .

[20]  J. Shull,et al.  X-ray secondary heating and ionization in quasar emission-line clouds , 1985 .

[21]  The Nuclear reaction network , 1986 .

[22]  Goldman Sp Generalized Laguerre representation: Application to relativistic two-photon decay rates. , 1989 .

[23]  Generalized Laguerre representation: Application to relativistic two-photon decay rates. , 1989, Physical review. A, General physics.

[24]  S. Mollerach,et al.  Isocurvature baryon perturbations and inflation. , 1990, Physical review. D, Particles and fields.

[25]  G. De Zotti,et al.  Formation and evolution of early distortions of the microwave background spectrum : a numerical study , 1991 .

[26]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[27]  Hu,et al.  Thermalization and spectral distortions of the cosmic background radiation. , 1993, Physical review. D, Particles and fields.

[28]  Sterile neutrinos as dark matter. , 1993, Physical review letters.

[29]  Bucher,et al.  Open universe from inflation. , 1994, Physical review. D, Particles and fields.

[30]  Effect of physical assumptions on the calculation of microwave background anisotropies. , 1995, Physical review. D, Particles and fields.

[31]  Turner,et al.  CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.

[32]  Sandberg,et al.  Two-Photon Spectroscopy of Trapped Atomic Hydrogen. , 1996, Physical review letters.

[33]  D. J. Fixsen,et al.  The Cosmic Microwave Background spectrum from the full COBE FIRAS data set , 1996 .

[34]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[35]  David H. Lyth,et al.  What Would We Learn by Detecting a Gravitational Wave Signal in the Cosmic Microwave Background Anisotropy , 1997 .

[36]  Forecasting cosmic parameter errors from microwave background anisotropy experiments , 1997, astro-ph/9702100.

[37]  M. Viviani,et al.  Measurements of 1H(d(Combining right arrow above) ,γ)3He and 2H(p(Combining right arrow above),γ)3He at very low energies , 1997 .

[38]  M. Zaldarriaga,et al.  Microwave Background Constraints on Cosmological Parameters , 1997, astro-ph/9702157.

[40]  A. G.,et al.  MEASUREMENTS OF AND FROM 42 HIGH-REDSHIFT SUPERNOVAE , 1998 .

[41]  Observationally determining the properties of dark matter , 1998, astro-ph/9806362.

[42]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[43]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[44]  Detailed study of defect models for cosmic structure formation , 1997, astro-ph/9711121.

[45]  Toy model for open inflation , 1998, hep-ph/9807493.

[46]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[47]  Wayne Hu,et al.  Structure Formation with Generalized Dark Matter , 1998, astro-ph/9801234.

[48]  Sara Seager,et al.  How Exactly Did the Universe Become Neutral? , 1999, astro-ph/9912182.

[49]  M. Kaplinghat,et al.  Constraining variations in the fine structure constant with the cosmic microwave background , 1998, astro-ph/9810133.

[50]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[51]  Photo- and electro-disintegration of {sup 3}He at threshold and pd radiative capture , 1999, nucl-th/9911051.

[52]  Cosmic microwave background anisotropy from wiggly strings , 1999, astro-ph/9903361.

[53]  Sara Seager,et al.  A New Calculation of the Recombination Epoch , 1999 .

[54]  General primordial cosmic perturbation , 1999, astro-ph/9904231.

[55]  Delayed Recombination , 2000, astro-ph/0004389.

[56]  David H. Lyth,et al.  Generating the curvature perturbation without an inflaton , 2001 .

[57]  Constraining isocurvature perturbations with cosmic microwave background polarization. , 2000, Physical review letters.

[58]  M. Kunz,et al.  Cosmic structure formation with topological defects , 2001 .

[59]  G. Miele,et al.  A precision calculation of the effective number of cosmological neutrinos , 2001, astro-ph/0111408.

[60]  Extending the velocity-dependent one-scale string evolution model , 2000, hep-ph/0003298.

[61]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[62]  L. Amendola,et al.  Correlated perturbations from inflation and the cosmic microwave background. , 2001, Physical review letters.

[63]  Cosmic Microwave Background Temperature at Galaxy Clusters , 2002, astro-ph/0208027.

[64]  Antony Lewis,et al.  Observational constraints on the curvaton model of inflation , 2003 .

[65]  P. Naselsky,et al.  Ionization History of the Cosmic Plasma in the Light of the Recent Cosmic Background Imager and Future Planck Data , 2002, astro-ph/0208114.

[66]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[67]  How generic is cosmic string formation in SUSY GUTs , 2003, hep-ph/0308134.

[68]  Comparison of cosmological Boltzmann codes: Are we ready for high precision cosmology? , 2003, astro-ph/0306052.

[69]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[70]  Can we have inflation with Omega > 1? , 2003, astro-ph/0303245.

[71]  Asantha Cooray,et al.  Lensing reconstruction with CMB temperature and polarization , 2003 .

[72]  Can we have inflation with Ω > 1?*Can we have inflation with Ω > 1? , 2003 .

[73]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003 .

[74]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[75]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: ANGULAR POWER SPECTRA , 2008, The Astrophysical Journal Supplement Series.

[76]  Michael Doran CMBEASY: an object oriented code for the cosmic microwave background , 2005 .

[77]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[78]  M. Sakellariadou,et al.  How generic is cosmic string formation in supersymmetric grand unified theories , 2003 .

[79]  G. Miele,et al.  Nuclear reaction network for primordial nucleosynthesis: a detailed analysis of rates, uncertainties and light nuclei yields , 2004, astro-ph/0408076.

[80]  Photometry and the Metallicity Distribution of the Outer Halo of M31. II. The 30 Kiloparsec Field , 2004, astro-ph/0405403.

[81]  S. Hannestad Structure formation with strongly interacting neutrinos—implications for the cosmological neutrino mass bound , 2004, astro-ph/0411475.

[82]  Particle decays during the cosmic dark ages , 2003, astro-ph/0310473.

[83]  Decay of the vacuum energy into CMB photons , 2004, astro-ph/0409451.

[84]  Neutrinoless universe. , 2004, Physical review letters.

[85]  J. Polchinski Cosmic Superstrings Revisited , 2004, hep-th/0410082.

[86]  Uros Seljak,et al.  Signatures of relativistic neutrinos in CMB anisotropy and matter clustering , 2004 .

[87]  Studying the decay of the vacuum energy with the observed density fluctuation spectrum , 2004, astro-ph/0405430.

[88]  D. Solovyev,et al.  QED calculation of E1M1 and E1E2 transition probabilities in one-electron ions with arbitrary nuclear charge , 2004, physics/0404131.

[89]  Matthias Bartelmann,et al.  Weak gravitational lensing , 2005 .

[90]  Observational consequences of a landscape , 2005, hep-th/0505232.

[91]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[92]  A. Melchiorri,et al.  Indication for primordial anisotropies in the neutrino background from the Wilkinson microwave anisotropy probe and the Sloan digital sky survey. , 2005, Physical Review Letters.

[93]  R. Opher,et al.  Decay of the vacuum energy into cosmic microwave background photons , 2005 .

[94]  Cosmic Strings , 2006, hep-th/0602276.

[95]  N. Padmanabhan,et al.  Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects , 2005, astro-ph/0503486.

[96]  Electromagnetic structure of A=2 and 3 nuclei and the nuclear current operator , 2005, nucl-th/0502048.

[97]  V. Dubrovich,et al.  Recombination dynamics of primordial hydrogen and helium (He I) in the universe , 2005 .

[98]  Neutrino mixing and cosmology , 2003, hep-ph/0311283.

[99]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[100]  Lines in the Cosmic Microwave Background Spectrum from the Epoch of Cosmological Hydrogen Recombination , 2006, astro-ph/0607373.

[101]  Bulk viscosity of a gas of neutrinos and coupled scalar particles, in the era of recombination , 2006, astro-ph/0601525.

[102]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[103]  Elena Pierpaoli,et al.  Constraining Isocurvature Initial Conditions with WMAP 3-year data , 2006 .

[104]  G. Efstathiou Hybrid estimation of cosmic microwave background polarization power spectra , 2006 .

[105]  Hybrid Estimation of CMB Polarization Power Spectra , 2006, astro-ph/0601107.

[106]  Free-bound emission from cosmological hydrogen recombination , 2006, astro-ph/0608120.

[107]  Impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background , 2006, astro-ph/0603425.

[108]  Spectral distortions to the cosmic microwave background from the recombination of hydrogen and helium , 2005, astro-ph/0510634.

[109]  R. Sunyaev,et al.  Induced two-photon decay of the 2s level and the rate of cosmological hydrogen recombination , 2006 .

[110]  Shinji Tsujikawa,et al.  Dynamics of dark energy , 2006 .

[111]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[112]  Two-photon 2s ↔ 1s transitions during hydrogen recombination in the universe , 2006, astro-ph/0611395.

[113]  The effect of forbidden transitions on cosmological hydrogen and helium recombination , 2006, astro-ph/0610691.

[114]  J. Hamann,et al.  The effects of cosmic microwave background (CMB) temperature uncertainties on cosmological parameter estimation , 2007, 0709.4423.

[115]  J. M. Moran,et al.  Toward a New Geometric Distance to the Active Galaxy NGC 4258. I. VLBI Monitoring of Water Maser Emission , 2007, astro-ph/0701396.

[116]  I. Sawicki,et al.  A Parameterized Post-Friedmann Framework for Modified Gravity , 2007, 0708.1190.

[117]  CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model , 2006, astro-ph/0605018.

[118]  Rapid He ii→He i recombination and radiation arising from this process , 2007, astro-ph/0703438.

[119]  Cosmological hydrogen recombination: Lyn line feedback and continuum escape , 2007, astro-ph/0702531.

[120]  M. Mortonson,et al.  Model-Independent Constraints on Reionization from Large-Scale Cosmic Microwave Background Polarization , 2007, 0705.1132.

[121]  The expansion field: the value of H0 , 2008, 0806.3018.

[122]  M. Kunz,et al.  Cosmic microwave anisotropies from BPS semilocal strings , 2007, 0711.1842.

[123]  A. Lewis,et al.  Crossing the phantom divide with parametrized post-Friedmann dark energy , 2008, 0808.3125.

[124]  Gennaro Miele,et al.  PArthENoPE: Public algorithm evaluating the nucleosynthesis of primordial elements , 2007, Comput. Phys. Commun..

[125]  A. Slosar,et al.  Cosmic microwave weak lensing data as a test for the dark universe , 2008, 0803.2309.

[126]  M. Messina,et al.  Probing low energy neutrino backgrounds with neutrino capture on beta decaying nuclei , 2007, hep-ph/0703075.

[127]  R. Sunyaev,et al.  Is there a need and another way to measure the cosmic microwave background temperature more accurately , 2007, 0707.0188.

[128]  Antony Lewis,et al.  Likelihood Analysis of CMB Temperature and Polarization Power Spectra , 2008, 0801.0554.

[129]  The Primordial Helium Abundance , 2008, 0811.2980.

[130]  A. Moss,et al.  How well do we understand cosmological recombination , 2007, 0711.1357.

[131]  Primordial helium recombination. I. Feedback, line transfer, and continuum opacity , 2007, astro-ph/0702143.

[132]  S. Karshenboim,et al.  Nonresonant effects and hydrogen transition line shape in cosmological recombination problems , 2008 .

[133]  R. Sunyaev,et al.  Lines in the cosmic microwave background spectrum from the epoch of cosmological helium recombination , 2007, 0711.0594.

[134]  A. Melchiorri,et al.  Delayed recombination and cosmic parameters , 2008, 0807.1420.

[135]  Alexander Westphal,et al.  Monodromy in the CMB: Gravity Waves and String Inflation , 2008, 0803.3085.

[136]  C. Hirata Two-photon transitions in primordial hydrogen recombination , 2008, 0803.0808.

[137]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[138]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[139]  Martin White,et al.  Testing cosmological structure formation using redshift-space distortions , 2008, 0808.0003.

[140]  G. Steigman,et al.  Constraining the early-Universe baryon density and expansion rate , 2008, 0803.3465.

[141]  Astronomy,et al.  Redshift Dependence of the CMB Temperature from S-Z Measurements , 2009, 0909.2815.

[142]  G. Miele,et al.  Primordial nucleosynthesis: From precision cosmology to fundamental physics , 2008, 0809.0631.

[143]  WMAP 5-year constraints on time variation of $\alpha$ and $m_e$ , 2009 .

[144]  P. A. R. Ade,et al.  MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4317.

[145]  F. Iocco,et al.  CMB constraints on dark matter models with large annihilation cross section , 2009, 0905.0003.

[146]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[147]  A. Melchiorri,et al.  From Cavendish to PLANCK: Constraining Newton’s gravitational constant with CMB temperature and polarization anisotropy , 2009, 0905.1808.

[148]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[149]  D. Hooper,et al.  Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope , 2009, 0910.2998.

[150]  Douglas P. Finkbeiner,et al.  A theory of dark matter , 2008, 0810.0713.

[151]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[152]  A. Conte,et al.  REDSHIFT DEPENDENCE OF THE COSMIC MICROWAVE BACKGROUND TEMPERATURE FROM SUNYAEV–ZELDOVICH MEASUREMENTS , 2009 .

[153]  Andi Hektor,et al.  Constraints on leptonically annihilating Dark Matter from reionization and extragalactic gamma background , 2009, 0906.4550.

[154]  Douglas P. Finkbeiner,et al.  CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch , 2009, 0906.1197.

[155]  Yong-Seon Song,et al.  Reconstructing the history of structure formation using redshift distortions , 2008, 0807.0810.

[156]  C. Hirata,et al.  Cosmological hydrogen recombination: The effect of extremely high-n states , 2009, 0911.1359.

[157]  B. D. Wandelt,et al.  Estimating the impact of recombination uncertainties on the cosmological parameter constraints from cosmic microwave background experiments , 2009, 0910.4383.

[158]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[159]  S. Tsujikawa Modified gravity models of dark energy , 2010, 1101.0191.

[160]  A. Ferrara,et al.  Particle energy cascade in the intergalactic medium , 2009, 0911.1125.

[161]  S. Basu,et al.  DETERMINING THE INITIAL HELIUM ABUNDANCE OF THE SUN , 2010, 1006.0244.

[162]  C. Hirata,et al.  Ultrafast effective multilevel atom method for primordial hydrogen recombination , 2010, 1006.1355.

[163]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[164]  M. Kunz,et al.  CMB power spectra from cosmic strings: Predictions for the Planck satellite and beyond , 2010, 1005.2663.

[165]  E. Copeland,et al.  Cosmic strings and superstrings , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[166]  J. Chluba,et al.  Towards a complete treatment of the cosmological recombination problem , 2010, 1010.3631.

[167]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[168]  A. Melchiorri,et al.  Future CMB constraints on early, cold, or stressed dark energy , 2010, 1010.5612.

[169]  R. Sunyaev,et al.  The evolution of CMB spectral distortions in the early Universe , 2011, 1109.6552.

[170]  M. Halpern,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES? , 2010, 1001.4758.

[171]  H. Trac,et al.  TEMPLATES FOR THE SUNYAEV–ZEL’DOVICH ANGULAR POWER SPECTRUM , 2010, 1006.2828.

[172]  A. B. Balantekin,et al.  Solar fusion cross sections II: the pp chain and CNO cycles , 2010, 1004.2318.

[173]  G. Efstathiou,et al.  A Simple Empirically Motivated Template for the Unresolved Thermal Sunyaev-Zeldovich Effect , 2011, 1106.3208.

[174]  A. Melchiorri,et al.  Updated CMB constraints on dark matter annihilation cross sections , 2011, 1106.1528.

[175]  Andi Hektor,et al.  WMAP7 and future CMB constraints on annihilating dark matter: implications for GeV-scale WIMPs , 2011, 1103.2766.

[176]  M. Lueker,et al.  COSMOLOGICAL CONSTRAINTS FROM SUNYAEV-ZEL’DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2011 .

[177]  An analysis of constraints on relativistic species from primordial nucleosynthesis and the cosmic microwave background , 2011, 1112.2683.

[178]  J. Chluba,et al.  Precise cosmological parameter estimation using CosmoRec , 2011, 1102.3683.

[179]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[180]  M. Sullivan,et al.  SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY , 2011, 1104.1443.

[181]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[182]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[183]  A. Melchiorri,et al.  Case for dark radiation , 2011, 1109.2767.

[184]  Olivier Dor'e,et al.  Compensated isocurvature perturbations and the cosmic microwave background , 2011, 1107.5047.

[185]  Semi-blind Eigen Analyses of Recombination Histories Using Cosmic Microwave Background Data , 2011, 1110.4608.

[186]  C. Hirata,et al.  HyRec: A fast and highly accurate primordial hydrogen and helium recombination code , 2010, 1011.3758.

[187]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[188]  P. Mcdonald,et al.  Distribution function approach to redshift space distortions , 2011, 1109.1888.

[189]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.

[190]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS , 2011, 1111.0932.

[191]  Douglas Scott,et al.  A UNIFIED EMPIRICAL MODEL FOR INFRARED GALAXY COUNTS BASED ON THE OBSERVED PHYSICAL EVOLUTION OF DISTANT GALAXIES , 2012, 1208.6512.

[192]  G. Karagiorgi,et al.  Light Sterile Neutrinos: A White Paper , 2012, 1204.5379.

[193]  Matthew Colless,et al.  The 6dF Galaxy Survey: z≈ 0 measurements of the growth rate and σ8: 6dFGS: z≈ 0 measurements of fσ8 and σ8 , 2012 .

[194]  D. Finkbeiner,et al.  Searching for dark matter in the CMB: A compact parametrization of energy injection from new physics , 2011, 1109.6322.

[195]  U. Cambridge,et al.  A new, precise measurement of the primordial abundance of deuterium , 2012, 1205.3785.

[196]  J. Chluba,et al.  Radiative transfer effects during primordial helium recombination , 2011, 1110.0247.

[197]  L. Guzzo,et al.  Statistical and systematic errors in redshift-space distortion measurements from large surveys , 2012, 1203.1545.

[198]  Oliver Zahn,et al.  Constraints on neutrino and dark radiation interactions using cosmological observations , 2011, 1105.3246.

[199]  Will Saunders,et al.  The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.

[200]  H. Hoekstra,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.0032.

[201]  T Glanzman,et al.  Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. , 2011, Physical review letters.

[202]  K. Benabed,et al.  Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code , 2012, 1210.7183.

[203]  J. Dunkley,et al.  Modelling the correlation between the thermal Sunyaev Zel'dovich effect and the cosmic infrared background , 2012, 1204.5927.

[204]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[205]  CMB constraints on light dark matter candidates , 2012 .

[206]  U. Seljak,et al.  Distribution function approach to redshift space distortions. Part III: halos and galaxies , 2012, 1206.4070.

[207]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1 , 2012, 1204.3674.

[208]  A. Myers,et al.  Baryon Acoustic Oscillations in the Ly-\alpha\ forest of BOSS quasars , 2012, 1211.2616.

[209]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[210]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[211]  H. Nguyen,et al.  HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES , 2012, 1208.5049.

[212]  G. Tammann,et al.  The luminosity of supernovae of type Ia from tip of the red-giant branch distances and the value of H0 , 2012, 1208.5054.

[213]  C. Burigana,et al.  How accurately can we measure the hydrogen 2S->1S transition rate from the cosmological data? , 2012, 1205.5949.

[214]  J. Lesgourgues,et al.  CMB photons shedding light on dark matter , 2012, 1209.0247.

[215]  A. Pastorello,et al.  SYSTEMATIC UNCERTAINTIES ASSOCIATED WITH THE COSMOLOGICAL ANALYSIS OF THE FIRST PAN-STARRS1 TYPE Ia SUPERNOVA SAMPLE , 2013, 1310.3824.

[216]  M. Laveder,et al.  Light sterile neutrinos in cosmology and short-baseline oscillation experiments , 2013, 1309.3192.

[217]  K. Olive,et al.  The primordial helium abundance from updated emissivities , 2013, 1309.0047.

[218]  S. Profumo TASI 2012 Lectures on Astrophysical Probes of Dark Matter , 2013, 1301.0952.

[219]  A. G. Vieregg,et al.  Inflation Physics from the Cosmic Microwave Background and Large Scale Structure , 2013, 1309.5381.

[220]  T. Schwetz,et al.  Sterile neutrino oscillations: the global picture , 2013, 1303.3011.

[221]  A. Melchiorri,et al.  Neutrino and dark radiation properties in light of recent CMB observations , 2013, 1303.0143.

[222]  M. C. Marsh,et al.  The cosmophenomenology of axionic dark radiation , 2013, 1304.1804.

[223]  D. Hooper,et al.  Dark Matter and Pulsar Origins of the Rising Cosmic Ray Positron Fraction in Light of New Data From AMS , 2013, 1304.1840.

[224]  M. Lueker,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2012, 1210.7231.

[225]  A. Mirizzi,et al.  The strongest bounds on active-sterile neutrino mixing after Planck data , 2013, 1303.5368.

[226]  N. Aghanim,et al.  TCMB evolution from the Sunyaev-Zel’dovich effect , 2013 .

[227]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[228]  J. Ellis,et al.  No-scale supergravity realization of the Starobinsky model of inflation. , 2013, Physical review letters.

[229]  R. B. Barreiro,et al.  Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.01583.

[230]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: BEAM MEASUREMENTS AND THE MICROWAVE BRIGHTNESS TEMPERATURES OF URANUS AND SATURN , 2013, The Astrophysical Journal Supplement Series.

[231]  O. Macias,et al.  Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations , 2013, 1306.5725.

[232]  W. Buchmuller,et al.  The Starobinsky model from superconformal D-term inflation , 2013, 1306.3471.

[233]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[234]  J. Aumont,et al.  Planck2018 results , 2013, Astronomy & Astrophysics.

[235]  C. J.,et al.  PRECISION MEASURES OF THE PRIMORDIAL ABUNDANCE OF DEUTERIUM ⋆ , 2013 .

[236]  Wayne Hu,et al.  $\nu\Lambda$CDM: Neutrinos help reconcile Planck with the Local Universe , 2013, 1307.7715.

[237]  Steven Weinberg,et al.  Goldstone bosons as fractional cosmic neutrinos. , 2013, Physical review letters.

[238]  Andrei Linde,et al.  Minimal Supergravity Models of Inflation , 2013, 1307.7696.

[239]  B Schulz,et al.  Detection of B-mode polarization in the cosmic microwave background with data from the South Pole Telescope. , 2013, Physical review letters.

[240]  Lincoln Greenhill,et al.  TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT , 2013, 1307.6031.

[241]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[242]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[243]  M. Schmittfull,et al.  Joint analysis of CMB temperature and lensing-reconstruction power spectra , 2013, 1308.0286.

[244]  G. Zamorani,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - Galaxy clustering and redshift-space distortions at z ≃ 0.8 in the first data release , 2013, 1303.2622.

[245]  Antony Lewis,et al.  Efficient sampling of fast and slow cosmological parameters , 2013, 1304.4473.

[246]  D. Gilliam,et al.  Improved determination of the neutron lifetime. , 2013, Physical review letters.

[247]  E. D. Valentino,et al.  Neutrino anisotropies after Planck , 2013, 1304.7400.

[248]  J. Dunlop,et al.  NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.

[249]  J. Hamann,et al.  A new life for sterile neutrinos: resolving inconsistencies using hot dark matter , 2013, 1308.3255.

[250]  Edward J. Wollack,et al.  Cosmological parameters from pre-planck cosmic microwave background measurements , 2013 .

[251]  M. Halpern,et al.  The Atacama Cosmology Telescope: likelihood for small-scale CMB data , 2013, 1301.0776.

[252]  M. Lueker,et al.  COSMOLOGICAL CONSTRAINTS FROM SUNYAEV–ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg2 OF THE SOUTH POLE TELESCOPE SURVEY , 2011, 1112.5435.

[253]  A. Hopkins,et al.  Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield , 2013, 1307.4738.

[254]  Jorn Kersten,et al.  Dark radiation from particle decay: cosmological constraints and opportunities , 2012, 1212.4160.

[255]  G. Drexlin,et al.  Current Direct Neutrino Mass Experiments , 2013, 1307.0101.

[256]  Andrei Linde,et al.  Superconformal generalizations of the Starobinsky model , 2013, 1306.3214.

[257]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[258]  J. Bond,et al.  CONSTRAINTS ON PERTURBATIONS TO THE RECOMBINATION HISTORY FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL , 2012, 1211.4634.

[259]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[260]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[261]  A. Slosar,et al.  Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.

[262]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[263]  A. Ferrara,et al.  Cosmic microwave background constraints on light dark matter candidates , 2012, Monthly Notices of the Royal Astronomical Society.

[264]  Adam D. Myers,et al.  Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations , 2013, 1311.1767.

[265]  S. Galli,et al.  Systematic Uncertainties In Constraining Dark Matter Annihilation From The Cosmic Microwave Background , 2013, 1306.0563.

[266]  K. Schahmaneche,et al.  Improved Photometric Calibration of the SNLS and the SDSS Supernova Surveys , 2012, 1212.4864.

[267]  A. Melchiorri,et al.  Sterile neutrinos: Cosmology versus short-baseline experiments , 2013, 1302.6720.

[268]  M. Laveder,et al.  Pragmatic view of short-baseline neutrino oscillations , 2013, 1308.5288.

[269]  C. A. Oxborrow,et al.  Planck intermediate results XVI. Profile likelihoods for cosmological parameters , 2013, 1311.1657.

[270]  Jasper Hasenkamp Daughters mimic sterile neutrinos (almost!) perfectly , 2014, 1405.6736.

[271]  S. Sarkar,et al.  Big-Bang Nucleosynthesis , 2014, 1412.1408.

[272]  O. Mena,et al.  Constraining dark matter late-time energy injection: decays and p-wave annihilations , 2013, 1308.2578.

[273]  G. W. Pratt,et al.  Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .

[274]  Tests of streaming models for redshift-space distortions , 2014 .

[275]  P. Meerburg Alleviating the tension at low multipole through Axion Monodromy , 2014, 1406.3243.

[276]  M. Kaplinghat,et al.  Astrophysical and dark matter interpretations of extended gamma-ray emission from the Galactic Center , 2014, 1402.4090.

[277]  Nathalie Palanque-Delabrouille,et al.  Constraint on neutrino masses from SDSS-III/BOSS Lyα forest and other cosmological probes , 2014, 1410.7244.

[278]  C. A. Oxborrow,et al.  Planck 2013 results. I. Overview of products and scientific results , 2013, 1502.01582.

[279]  Bonn,et al.  Robust weak-lensing mass calibration of Planck galaxy clusters , 2014, 1402.2670.

[280]  G. Efstathiou H 0 revisited , 2013, 1311.3461.

[281]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering , 2013, 1312.4899.

[282]  M. V. Fernandes,et al.  Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S , 2014, 1405.0488.

[283]  M. Gonzalez-Garcia,et al.  Statistical tests of sterile neutrinos using cosmology and short-baseline data , 2014, 1407.3806.

[284]  C. Mazzocchi,et al.  First direct measurement of the 2H(α,γ)6Li cross section at big bang energies and the primordial lithium problem. , 2014, Physical review letters.

[285]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:signs of neutrino mass in current cosmological data sets , 2014, 1403.4599.

[286]  Adrian T. Lee,et al.  CONSTRAINTS ON COSMOLOGY FROM THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM OF THE 2500 deg2 SPT-SZ SURVEY , 2012, 1212.6267.

[287]  M. Lueker,et al.  Constraints on the CMB temperature evolution using multiband measurements of the Sunyaev–Zel'dovich effect with the South Pole Telescope , 2013, 1312.2462.

[288]  Planck 2013 results. XXXI. Consistency of the Planck data , 2014 .

[289]  E. M. Leitch,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION POWER SPECTRUM AT SUB-DEGREE SCALES WITH POLARBEAR , 2014, 1403.2369.

[290]  J. Schaye,et al.  The thermal Sunyaev–Zel'dovich effect power spectrum in light of Planck , 2013, 1312.5341.

[291]  Adam D. Myers,et al.  Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars , 2014, 1404.1801.

[292]  Wayne Hu,et al.  Neutrinos help reconcile Planck measurements with the local universe. , 2014, Physical review letters.

[293]  R. Sagdeev,et al.  Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.

[294]  J. Silk,et al.  Fitting the Fermi-LAT GeV excess: On the importance of including the propagation of electrons from dark matter , 2014, 1403.1987.

[295]  M Hazumi,et al.  Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background. , 2013, Physical review letters.

[296]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[297]  M. White,et al.  Dependence of the cosmic microwave background lensing power spectrum on the matter density , 2014, 1406.5459.

[298]  J. Cardoso,et al.  CMB Polarization can constrain cosmology better than CMB temperature , 2014, 1403.5271.

[299]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[300]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.

[301]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1408.3161.

[302]  P. Astier,et al.  COSMOLOGICAL PARAMETER UNCERTAINTIES FROM SALT-II TYPE IA SUPERNOVA LIGHT CURVE MODELS , 2014, 1401.4065.

[303]  J. Chluba Tests of the CMB temperature-redshift relation, CMB spectral distortions and why adiabatic photon production is hard , 2014, 1405.1277.

[304]  H. Hoekstra,et al.  3D cosmic shear: cosmology from CFHTLenS , 2014, 1401.6842.

[305]  University of British Columbia,et al.  THE 1% CONCORDANCE HUBBLE CONSTANT , 2014, 1406.1718.

[306]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[307]  D. Hooper,et al.  The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter , 2014, 1402.6703.

[308]  D. Roest Universality classes of inflation , 2013, 1309.1285.

[309]  MIT,et al.  Current dark matter annihilation constraints from CMB and low-redshift data , 2013, 1310.3815.

[310]  David N. Spergel,et al.  THE ATACAMA COSMOLOGY TELESCOPE: LENSING OF CMB TEMPERATURE AND POLARIZATION DERIVED FROM COSMIC INFRARED BACKGROUND CROSS-CORRELATION , 2014, 1412.0626.

[311]  Olivier Dor'e,et al.  Baryons do trace dark matter 380,000 years after the big bang: Search for compensated isocurvature perturbations with WMAP 9-year data , 2013, 1306.4319.

[312]  Kyiv,et al.  A new determination of the primordial He abundance using the He i λ10830 Å emission line: cosmological implications , 2014, 1408.6953.

[313]  Alexie Leauthaud,et al.  A 2.5 per cent measurement of the growth rate from small-scale redshift space clustering of SDSS-III CMASS galaxies , 2014, 1404.3742.

[314]  L. Verde,et al.  No new cosmological concordance with massive sterile neutrinos. , 2014, Physical review letters.

[315]  J. Lesgourgues,et al.  Robustness of cosmic neutrino background detection in the cosmic microwave background , 2014, 1412.5948.

[316]  T. Linden The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter , 2014 .

[317]  Takahiro Nishimichi,et al.  Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample , 2013, 1310.2820.

[318]  David N. Spergel,et al.  Toward an understanding of foreground emission in the BICEP2 region , 2014, 1405.7351.

[319]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[320]  N. Aghanim,et al.  Measurement of the TCMB evolution from the Sunyaev-Zel’dovich effect , 2014 .

[321]  C. Collins,et al.  The extended ROSAT-ESO Flux Limited X-ray Galaxy Cluster Survey (REFLEX II) - IV. X-ray luminosity function and first constraints on cosmological parameters , 2014, 1403.2927.

[322]  N. Padmanabhan,et al.  Improved WiggleZ Dark Energy Survey Distance Measurements to z = 1 with Reconstruction of the Baryonic Acoustic Feature , 2014 .

[323]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles , 2013, 1312.4611.

[324]  C. Lunardini,et al.  Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential , 2014, 1405.7654.

[325]  A new look at the cosmic ray positron fraction , 2014, 1410.3799.

[326]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[327]  Urovs Seljak,et al.  A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty , 2014, 1405.5857.

[328]  C. A. Oxborrow,et al.  Planck 2013 results. XXXI. Consistency of the Planck data , 2014, 1508.03375.

[329]  M Hazumi,et al.  Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment. , 2013, Physical review letters.

[330]  David N. Spergel,et al.  The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data , 2013, 1301.1037.

[331]  P. A. R. Ade,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND GRAVITATIONAL LENSING POTENTIAL FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2014, 1412.4760.

[332]  J. García-Bellido,et al.  Lyth bound of inflation with a tilt , 2014, 1408.6839.

[333]  F. Takahashi,et al.  Running spectral index from large-field inflation with modulations revisited , 2014, 1403.4589.

[334]  U. Fuskeland,et al.  SPATIAL VARIATIONS IN THE SPECTRAL INDEX OF POLARIZED SYNCHROTRON EMISSION IN THE 9 yr WMAP SKY MAPS , 2014, 1404.5323.

[335]  J. Lesgourgues,et al.  Probing nuclear rates with Planck and BICEP2 , 2014, 1404.7848.

[336]  M. Kamionkowski,et al.  Silk damping at a redshift of a billion: new limit on small-scale adiabatic perturbations. , 2014, Physical review letters.

[337]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[338]  H. Hoekstra,et al.  CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations , 2014, 1404.5469.

[339]  A. Moss,et al.  Evidence for massive neutrinos from cosmic microwave background and lensing observations. , 2013, Physical review letters.

[340]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[341]  Cosmological Invisible Decay of Light Sterile Neutrinos , 2014, 1404.6160.

[342]  J. Chiang,et al.  Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope , 2013, 1310.0828.

[343]  C. A. Oxborrow,et al.  Planck 2015 results. XVIII. Background geometry & topology , 2015, 1502.01593.

[344]  Adam D. Myers,et al.  Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.

[345]  G. W. Pratt,et al.  Planck2015 results: XXVI. The SecondPlanckCatalogue of Compact Sources , 2015, 1507.02058.

[346]  S. Bridle,et al.  Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? , 2014, 1408.4742.

[347]  Heidelberg,et al.  Weighing the giants – IV. Cosmology and neutrino mass , 2014, 1407.4516.

[348]  M. Zaldarriaga,et al.  Implications of the scalar tilt for the tensor-to-scalar ratio , 2014, 1412.0678.

[349]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[350]  C. A. Oxborrow,et al.  Planck 2015 results. VII. HFI TOI and beam processing , 2015, 1502.01586.

[351]  C. A. Oxborrow,et al.  Planck 2015 results - XXVIII. The Planck Catalogue of Galactic cold clumps , 2015, 1502.01599.

[352]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[353]  C. McBride,et al.  Tests of redshift-space distortions models in configuration space for the analysis of the BOSS final data release , 2014, 1408.5435.

[354]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[355]  Ashley J. Ross,et al.  The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.

[356]  R. Bousso,et al.  Inflation after false vacuum decay: Observational prospects after Planck , 2013, 1309.4060.

[357]  W. Percival,et al.  The clustering of the SDSS main galaxy sample – II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15 , 2014, 1409.3238.

[358]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[359]  M. Kaplinghat,et al.  Inflation that runs naturally: Gravitational waves and suppression of power at large and small scales , 2014, 1411.0689.

[360]  C. Baltay,et al.  CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT , 2014, 1412.6501.

[361]  R. Hložek,et al.  Planck data reconsidered , 2013, 1312.3313.

[362]  A. Moss,et al.  Tension between the power spectrum of density perturbations measured on large and small scales , 2014, 1409.2769.

[363]  R. W. Ogburn,et al.  Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.

[364]  G. W. Pratt,et al.  Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization , 2014, 1405.0874.

[365]  E. Puchwein,et al.  Lyman α emitters gone missing: evidence for late reionization? , 2014, 1412.4790.

[366]  C. Weniger,et al.  A tale of tails: Dark matter interpretations of the Fermi GeV excess in light of background model systematics , 2014, 1411.4647.

[367]  Planck 2015 results. V. LFI calibration , 2015, 1505.08022.

[368]  L. Verde,et al.  Calibrating the cosmic distance scale ladder: the role of the sound horizon scale and the local expansion rate as distance anchors , 2014, 1411.1094.

[369]  G. W. Pratt,et al.  Planck 2015 results: III. LFI systematic uncertainties , 2015, 1507.08853.

[370]  H. Hoekstra,et al.  The Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing masses , 2015, 1502.01883.

[371]  R. B. Barreiro,et al.  Planck 2013 results. IV. Low Frequency Instrument beams and window functions , 2013, 1303.5065.

[372]  C. Heymans,et al.  Baryons, neutrinos, feedback and weak gravitational lensing , 2014, 1407.4301.

[373]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[374]  A. G. Vieregg,et al.  Neutrino Physics from the Cosmic Microwave Background and Large-Scale Structure , 2013, 1309.5383.

[375]  G. W. Pratt,et al.  Planck 2015 results. XVII. Constraints on primordial non-Gaussianity , 2015, 1502.01592.

[376]  G. W. Pratt,et al.  Planck 2015 results: XIX. Constraints on primordial magnetic fields , 2015, 1502.01594.

[377]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results XII . Full focal plane simulations , 2016 .

[378]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .

[379]  C. A. Oxborrow,et al.  Planck 2015 results. VII. High Frequency Instrument data processing: Time-ordered information and beams , 2015 .

[380]  C. A. Oxborrow,et al.  Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds , 2015, 1506.06660.

[381]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results VIII . High Frequency Instrument data processing : Calibration and maps , 2016 .

[382]  C. A. Oxborrow,et al.  Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.05956.

[383]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[384]  C. A. Oxborrow,et al.  Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.

[385]  G. W. Pratt,et al.  Planck 2015 results - VI. LFI mapmaking , 2015, 1502.01585.

[386]  G. W. Pratt,et al.  Planck intermediate results - XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes , 2014, 1409.5738.

[387]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies , 2015, 1509.06386.

[388]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[389]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[390]  J. Kneib,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering , 2013, 1312.4889.

[391]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[392]  R. Mandelbaum,et al.  Weak lensing calibration of mass bias in the REFLEX+BCS X-ray galaxy cluster catalogue , 2015, 1502.01024.

[393]  B. Jones Recombination of the Primeval Plasma , 2017 .