Ordinal Pattern Dependence in the Context of Long-Range Dependence

Ordinal pattern dependence is a multivariate dependence measure based on the co-movement of two time series. In strong connection to ordinal time series analysis, the ordinal information is taken into account to derive robust results on the dependence between the two processes. This article deals with ordinal pattern dependence for a long-range dependent time series including mixed cases of short- and long-range dependence. We investigate the limit distributions for estimators of ordinal pattern dependence. In doing so, we point out the differences that arise for the underlying time series having different dependence structures. Depending on these assumptions, central and non-central limit theorems are proven. The limit distributions for the latter ones can be included in the class of multivariate Rosenblatt processes. Finally, a simulation study is provided to illustrate our theoretical findings.

[1]  Chstoph Bandt,et al.  Order Patterns in Time Series , 2007 .

[2]  V. Pipiras,et al.  DEFINITIONS AND REPRESENTATIONS OF MULTIVARIATE LONG‐RANGE DEPENDENT TIME SERIES , 2015 .

[3]  Wilfredo Palma,et al.  Long‐Memory Processes , 2006 .

[4]  M. A. Arcones,et al.  Limit Theorems for Nonlinear Functionals of a Stationary Gaussian Sequence of Vectors , 1994 .

[5]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[6]  Karsten Keller,et al.  Change-Point Detection Using the Conditional Entropy of Ordinal Patterns , 2015, Entropy.

[7]  Vladas Pipiras,et al.  Long-Range Dependence and Self-Similarity , 2017 .

[8]  Limit theorems for multivariate long-range dependent processes , 2017, 1704.08609.

[9]  Mariano Matilla-García,et al.  A Non-Parametric Independence Test Using Permutation Entropy , 2008 .

[10]  I. Abrahamson Orthant Probabilities for the Quadrivariate Normal Distribution , 1964 .

[11]  J. Magnus,et al.  The Commutation Matrix: Some Properties and Applications , 1979 .

[12]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[13]  Tim Gutjahr,et al.  Ordinal Pattern Based Entropies and the Kolmogorov–Sinai Entropy: An Update , 2020, Entropy.

[14]  Mariano Matilla-García,et al.  Two Tests for Dependence (of Unknown Form) between Time Series , 2019, Entropy.

[15]  Mathieu Sinn,et al.  Ordinal analysis of time series , 2005 .

[16]  Alexander Schnurr,et al.  An ordinal pattern approach to detect and to model leverage effects and dependence structures between financial time series , 2014, 1502.07321.

[17]  Non-central limit theorem for non-linear functionals of vector valued Gaussian stationary random fields , 2019, 1901.04086.

[18]  Oliver W. W. Yang,et al.  Traffic prediction using FARIMA models , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[19]  Mathieu Sinn,et al.  Kolmogorov-Sinai entropy from the ordinal viewpoint , 2010 .

[20]  H. Dehling,et al.  Ordinal patterns in long‐range dependent time series , 2019, Scandinavian Journal of Statistics.

[21]  Herold Dehling,et al.  Testing for Structural Breaks via Ordinal Pattern Dependence , 2015, 1501.07858.

[22]  Mathieu Sinn,et al.  Estimation of ordinal pattern probabilities in Gaussian processes with stationary increments , 2011, Comput. Stat. Data Anal..

[23]  Marie-Christine Düker Limit theorems for multivariate long-range dependent processes , 2017 .

[24]  Anubha Gupta,et al.  Stochastic modeling of EEG rhythms with fractional Gaussian Noise , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[25]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[26]  Limit theorems in the context of multivariate long-range dependence , 2020 .

[27]  K. Johnson An Update. , 1984, Journal of food protection.

[28]  Michael Stoll,et al.  Lineare Algebra , 2021, Mathematik für Ingenieure 1.

[29]  Mariano Matilla-García,et al.  Symbolic correlation integral , 2019 .

[30]  K. Keller,et al.  Ordinal analysis of EEG time series , 2005 .

[31]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[32]  M. Taqqu,et al.  Properties and numerical evaluation of the Rosenblatt distribution , 2013, 1307.5990.

[33]  M. Taqqu Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.