Explicit factors of some iterated resultants and discriminants

In this paper, the result of applying iterative univariate resultant constructions to multivariate polynomials is analyzed. We consider the input polynomials as generic polynomials of a given degree and exhibit explicit decompositions into irreducible factors of several constructions involving two times iterated univariate resultants and discriminants over the integer universal ring of coefficients of the entry polynomials. Cases involving from two to four generic polynomials and resultants or discriminants in one of their variables are treated. The decompositions into irreducible factors we get are obtained by exploiting fundamental properties of the univariate resultants and discriminants and induction on the degree of the polynomials. As a consequence, each irreducible factor can be separately and explicitly computed in terms of a certain multivariate resultant. With this approach, we also obtain as direct corollaries some results conjectured by Collins and McCallum which correspond to the case of polynomials whose coefficients are themselves generic polynomials in other variables. Finally, a geometric interpretation of the algebraic factorization of the iterated discriminant of a single polynomial is detailled.

[1]  Daniel Lazard,et al.  Iterated discriminants , 2009, J. Symb. Comput..

[2]  J. Canny,et al.  Efficient incremental algorithms for the sparse resultant and the mixed volume , 1995 .

[3]  Laurent Busé,et al.  Resultants of determinantal varieties , 2004 .

[4]  P. Wilson,et al.  DISCRIMINANTS, RESULTANTS AND MULTIDIMENSIONAL DETERMINANTS (Mathematics: Theory and Applications) , 1996 .

[5]  R. Tennant Algebra , 1941, Nature.

[6]  Scott McCallum,et al.  Factors of iterated resultants and discriminants , 1997, SIGS.

[7]  J. Jouanolou Formes d'inertie et résultant: un formulaire , 1997 .

[8]  Carlo Traverso,et al.  Effective methods in algebraic geometry , 1991 .

[9]  A. B. BASSET,et al.  Modern Algebra , 1905, Nature.

[10]  B. Mourrain,et al.  Isotopic meshing of a real algebraic surface , 2006 .

[11]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[12]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[13]  Wolfgang Krull Funktionaldeterminanten und Diskriminanten bei Polynomen in mehreren Unbestimmten , 1939 .

[14]  Dinesh Manocha,et al.  Implicit Representation of Rational Parametric Surfaces , 1992, J. Symb. Comput..

[15]  B. Mourrain,et al.  Resultant over the residual of a complete intersection , 2001 .

[16]  Jean-Pierre Jouanolou,et al.  Résultant anisotrope, comple'ments et applications , 1996, Electron. J. Comb..

[17]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[18]  Wolfgang Krull Funktionaldeterminanten und Diskriminanten bei Polynomen in mehreren Unbestimmten. II , 1939 .

[19]  Olaus M. F. E. Henrici On Certain Formula Concerning the Theory of Discriminants; with Applications to Discriminants of Discriminants, and to the Theory of Polar Curves , 1866 .

[20]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[21]  M. Coste AN INTRODUCTION TO SEMIALGEBRAIC GEOMETRY , 2002 .

[22]  J. Jouanolou,et al.  Le formalisme du résultant , 1991 .

[23]  H. Whitney On Singularities of Mappings of Euclidean Spaces. I. Mappings of the Plane Into the Plane , 1955 .

[24]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[25]  Hassler Whitney,et al.  Singularities of Mappings of Euclidean Spaces , 1992 .

[26]  Robert Hardt,et al.  Triangulation of subanalytic sets and proper light subanalytic maps , 1976 .

[27]  C. D'Andrea Macaulay style formulas for sparse resultants , 2001 .

[28]  R. Thom Les singularites des applications differentiables , 1956 .

[29]  Bernard Mourrain,et al.  Using projection operators in computer aided geometric design , 2003 .

[30]  Laurent Busé,et al.  Étude du résultant sur une variété algébrique , 2001 .

[31]  O. Platonova,et al.  Projections of smooth surfaces , 1986 .

[32]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .