High Order Semi-Lagrangian Discontinuous Galerkin Method Coupled with Runge-Kutta Exponential Integrators for Nonlinear Vlasov Dynamics
暂无分享,去创建一个
[1] Lukas Einkemmer,et al. Convergence Analysis of a Discontinuous Galerkin/Strang Splitting Approximation for the Vlasov-Poisson Equations , 2012, SIAM J. Numer. Anal..
[2] Todd Arbogast,et al. A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws , 2016, J. Comput. Phys..
[3] Riccardo Sacco,et al. A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows , 2006, J. Comput. Phys..
[4] Chi-Wang Shu,et al. Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system , 2011, J. Comput. Phys..
[5] Paul A. Ullrich,et al. A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid , 2010, J. Comput. Phys..
[6] Xiangxiong Zhang,et al. On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..
[7] Magdi Shoucri. A two-level implicit scheme for the numerical solution of the linearized vorticity equation , 1981 .
[8] David C. Seal,et al. A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations , 2010, J. Comput. Phys..
[9] Xiaozhou Li,et al. Smoothness-Increasing Accuracy-Conserving (SIAC) filters for derivative approximations of discontinuous Galerkin (DG) solutions over nonuniform meshes and near boundaries , 2016, J. Comput. Appl. Math..
[10] Lukas Einkemmer,et al. A performance comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions , 2018, J. Comput. Phys..
[11] Andrew M. Bradley,et al. Conservative Multimoment Transport along Characteristics for Discontinuous Galerkin Methods , 2019, SIAM J. Sci. Comput..
[12] D. Esteve,et al. A 5D gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations , 2016, Comput. Phys. Commun..
[13] Hong Wang,et al. An ELLAM Scheme for Advection-Diffusion Equations in Two Dimensions , 1999, SIAM J. Sci. Comput..
[14] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[15] Jennifer K. Ryan,et al. Extension of a Post Processing Technique for the Discontinuous Galerkin Method for Hyperbolic Equations with Application to an Aeroacoustic Problem , 2005, SIAM J. Sci. Comput..
[16] Elena Celledoni,et al. Commutator-free Lie group methods , 2003, Future Gener. Comput. Syst..
[17] Jing-Mei Qiu,et al. A Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere , 2014 .
[18] Lorenzo Pareschi,et al. Modeling and Computational Methods for Kinetic Equations , 2012 .
[19] Raphaël Loubère,et al. A multiscale fast semi-Lagrangian method for rarefied gas dynamics , 2015, J. Comput. Phys..
[20] George Em Karniadakis,et al. A semi-Lagrangian high-order method for Navier-Stokes equations , 2001 .
[21] Ilaria Perugia,et al. An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..
[22] Hong Wang,et al. An Eulerian-Lagrangian Solution Technique for Single-Phase Compositional Flow in Three-Dimensional Porous Media , 2006, Comput. Math. Appl..
[23] Todd Arbogast,et al. An Eulerian-Lagrangian WENO finite volume scheme for advection problems , 2012, J. Comput. Phys..
[24] Nicolas Crouseilles,et al. DISCONTINUOUS GALERKIN SEMI-LAGRANGIAN METHOD FOR VLASOV-POISSON , 2011 .
[25] Jianxian Qiu,et al. An h-Adaptive RKDG Method for the Vlasov–Poisson System , 2016, J. Sci. Comput..
[26] D. Lee,et al. A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes , 2016, J. Comput. Phys..
[27] Wei Guo,et al. A High Order Semi-Lagrangian Discontinuous Galerkin Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model Without Operator Splitting , 2018, Journal of Scientific Computing.
[28] Martin Schreiber,et al. Semi-Lagrangian Exponential Integration with Application to the Rotating Shallow Water Equations , 2019, SIAM J. Sci. Comput..
[29] Elena Celledoni,et al. Semi-Lagrangian Runge-Kutta Exponential Integrators for Convection Dominated Problems , 2009, J. Sci. Comput..
[30] Wei Guo,et al. A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting , 2017, J. Comput. Phys..
[31] Giovanni Russo,et al. A High Order Multi-Dimensional Characteristic Tracing Strategy for the Vlasov–Poisson System , 2017, J. Sci. Comput..
[32] B. K. Kometa. On Semi-Lagrangian Exponential Integrators and Discontinuous Galerkin Methods , 2011 .
[33] Giovanni Russo,et al. Boundary conditions for semi-Lagrangian methods for the BGK model , 2016 .
[34] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[35] Wei Guo,et al. A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations , 2016, Journal of Scientific Computing.
[36] Roberto Ferretti,et al. A fully semi-Lagrangian discretization for the 2D incompressible Navier-Stokes equations in the vorticity-streamfunction formulation , 2018, Appl. Math. Comput..
[37] Endre Süli,et al. Enhanced accuracy by post-processing for finite element methods for hyperbolic equations , 2003, Math. Comput..
[38] K. Kormann,et al. Stable Interpolation with Isotropic and Anisotropic Gaussians Using Hermite Generating Function , 2019, SIAM J. Sci. Comput..
[39] Aijie Cheng,et al. A preliminary study on multiscale ELLAM schemes for transient advection‐diffusion equations , 2010 .
[40] T. F. Russell,et al. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation , 1990 .
[41] Francis Filbet,et al. Vlasov simulations of beams with a moving grid , 2004, Comput. Phys. Commun..
[42] Elena Celledoni,et al. High Order Semi-Lagrangian Methods for the Incompressible Navier–Stokes Equations , 2012, J. Sci. Comput..
[43] Jing-Mei Qiu,et al. Optimal convergence and superconvergence of semi-Lagrangian discontinuous Galerkin methods for linear convection equations in one space dimension , 2020, Math. Comput..
[44] S. Hirstoaga,et al. A new fully two-dimensional conservative semi-Lagrangian method: applications on polar grids, from diocotron instability to ITG turbulence , 2014, The European Physical Journal D.
[45] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .
[46] Shian-Jiann Lin,et al. An explicit flux‐form semi‐lagrangian shallow‐water model on the sphere , 1997 .
[47] Pierre Bertrand,et al. A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system , 2008, J. Comput. Phys..
[48] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[49] N. Besse,et al. Adaptive multiresolution semi-Lagrangian discontinuous Galerkin methods for the Vlasov equations , 2017, J. Comput. Phys..
[50] Wei Guo,et al. Comparison of Semi-Lagrangian Discontinuous Galerkin Schemes for Linear and Nonlinear Transport Simulations , 2019, Communications on Applied Mathematics and Computation.
[51] Jianxian Qiu,et al. An h-Adaptive RKDG Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model , 2017, J. Sci. Comput..
[52] O. Pironneau. On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .
[53] Giovanni Tumolo,et al. A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations , 2013, J. Comput. Phys..
[54] Zhengfu Xu,et al. High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation , 2013, J. Comput. Phys..
[55] Chi-Wang Shu,et al. Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow , 2011, J. Comput. Phys..